Polarization of both beams at the ILC

Gudrid Moortgat-Pick (CERN)

Collider Physics: From Tevatron to the LHC to the LC Aspen, 2.9.2005

1. Introduction

- \rightarrow General remarks
- \rightarrow Polarization report

2. The physics case for polarized e^- and e^+

- \rightarrow Top
- \rightarrow Higgs
- \rightarrow SUSY
- \rightarrow Constraints from high-precisions tests at GigaZ
- \rightarrow Other kinds of new physics

3. Last-but-not-least: some technical details

4. Concluding remarks

What is so special at a LC?

- precisely known initial state, kinematics fully known clean large S(ignal)/B(background) \rightarrow clear signatures excellent flavour tagging, c-, b-quark high luminosity (300-500 fb $^{-1}$ /year) precise test of theory at loop (quantum) level precise analysis of the chiral structure: polarized beams excellent detector resolution tunable beam energy 90 - \sim 500 GeV (1.phase) flexible upgrade 1000 GeV (2. phase) high e^- and e^+ beam polarization running options $(\gamma\gamma, e\gamma, e^-e^-)$ at 1st phase: $\sqrt{s} = 500 \text{ GeV} \rightarrow 650 \text{ GeV}$ but $\mathcal{L}^{650} = \mathcal{L}^{500}/3$ flexible+ without power changes!
- \Rightarrow The ILC is a precision as well as a discovery machine ...
- \rightarrow Beam polarization = decisive tool for exploring new physics!

Physics at the e^+e^- Linear Collider

- * Discovery of New Physics (NP)
 - \rightarrow Large potential for direct searches
 - \rightarrow Impressive potential also for indirect searches!
- * Unravelling the structure of NP
 - \rightarrow precise determination of underlying dynamics and parameters
 - \rightarrow model distinction through model-independent searches
- * High precision measurements
 - \rightarrow tests of the SM with unprecedented precision
 - \rightarrow even smallest hints of NP could be observed
- \Rightarrow Beam polarization = decisive tool for direct and indirect searches!

'State of the art':

Polarized e^- beam at SLAC: SLC ~ 75%

 $E158 \sim 90\%$

at Nagoya, KEK: $\sim 90\%$

new results show that $P(e^-) \sim 90\%$ can be expected at ILC!

 \Rightarrow won't such high $P(e^{-})$ suffice?

Polarization report - 'The role of polarized positrons and electrons in revealing fundamental interactions at the Linear Collider' (working group POWER = POlarization at Work in Energetic Reactions)

- The 'physics case' for having both beams polarized: 150 pages, \sim 80 authors, \sim 35 institutes
- → incl. 90 pages physics, 20 pages machine, 20 pages polarimetry
- \rightarrow GMP et al., hep-ph/0507011, submitted to Phyics Reports
- → http://www.ippp.dur.ac.uk/~gudrid/power/
- \rightarrow executive summary, 12 pages, same webpage
- News from physics with polarized beams in Susy, SM, other NP!
- \rightarrow focus on use of P_{e^+} compared to P_{e^-} only
- Machine overview about polarized e^+ sources and polarization measurements

Physics case for having both beams polarized – outline of the report

a) Introduction:

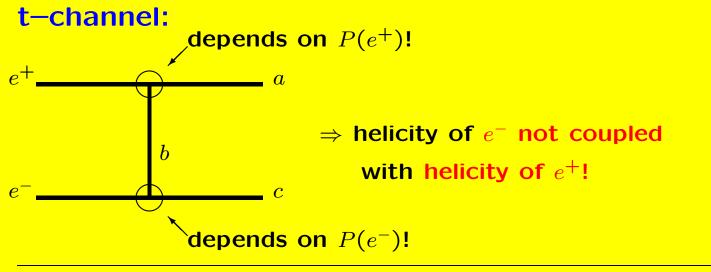
- ***** possible general dependences on beam polarization w.r.t. kind of interaction
- \star definitions and gain in accuracy for A_{LR} measurement with P_{e^+}
- b) Open questions of the SM: top, Higgs, GigaZ
 - $\star t$ and H couplings and properties
 - ***** application of Blondel scheme for high precision tests
- c) Searches for New Physics: Susy, CI, ED, LQ, new CP-violation,...
 - ***** parameter determination (many!), CP-violating effects, background supp.
 - model-independent approaches in direct and indirect searches

d) Summary of the physics cases

- ***** qualitative and quantitative improvement factors listed in short summaries
- ***** summary table for longitudinally and transversely polarized beams

e) Technical aspects:

- **\star** history of polarized e^- at SLC; polarized e^- source design for ILC
- \star polarized e^+ : undulator-based schemes , comments on laser-based scheme
- ***** polarization measurement via up-/downstream polarimetry, annihilation data


General remarks about the coupling structure

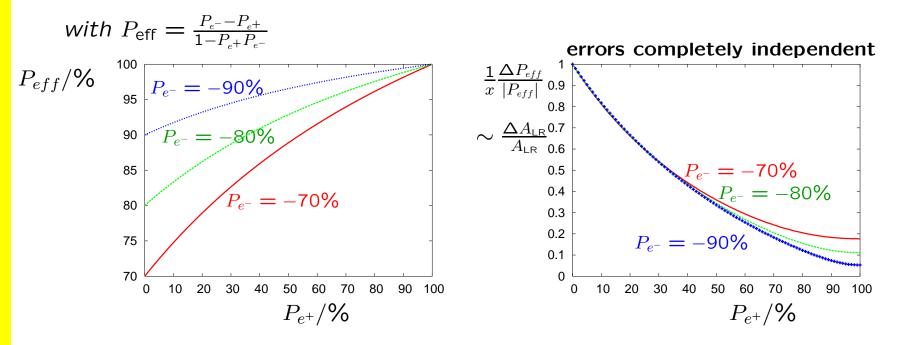
Def.: left-handed $\equiv P(e^{\pm}) < 0$ right-handed $\equiv P(e^{\pm}) > 0$ Which configurations are possible in principle? s-channel:

 e^+ J=1 \leftarrow contributions only from RL,LR: SM and NP (γ , Z) J=0 \leftarrow contributions only from LL,RR: NP!

 \Rightarrow In principle: $P(e^{-})$ fixes also helicity of e^{+} !

Which configurations are possible in the crossed channels?

Gudi Moortgat-Pick


Some well-known statistical examples

As warm-up: gain in effective polarization $P_{\rm eff}$ and A_{LR}

• Enhancement of effective polarization and measurement of A_{LR}

For many processes (V, A interactions) the cross section is given by:

$$\sigma_{P_{e^-}P_{e^+}} = \frac{1+P_{e^-}}{2} \frac{1-P_{e^+}}{2} \sigma_{\mathsf{RL}} + \frac{1-P_{e^-}}{2} \frac{1+P_{e^+}}{2} \sigma_{\mathsf{LR}} = (1-P_{e^+}P_{e^-}) \sigma_0 \left[1 - P_{\mathsf{eff}} A_{\mathsf{LR}}\right]$$

\Rightarrow Both e^- and e^+ beams should be polarized!

Let's start with 'safe' physics: Top – determination of the electroweak properties

Process: $e^+e^- \rightarrow t\bar{t}$ (test of coupling $t \rightarrow \gamma$, Z)

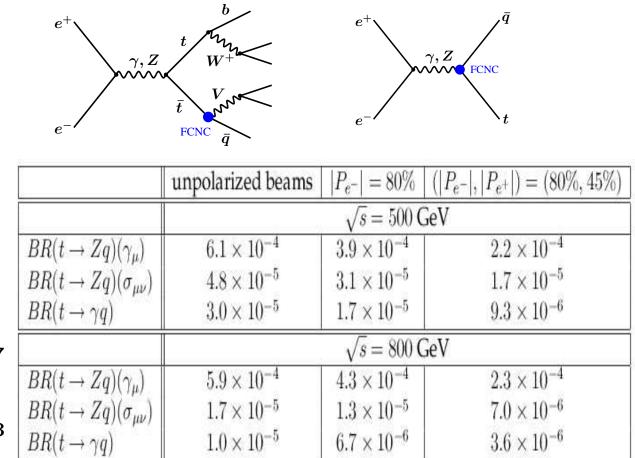
 $\Gamma^{\mu}_{t\bar{t}\gamma,Z} = ie\{\gamma^{\mu}[F^{\gamma,Z}_{1V} + F^{\gamma,Z}_{1A}\gamma^{5}]$ $+\frac{(p_t-p_{\bar{t}})^{\mu}}{2m}[F_{2V}^{\gamma,Z}+F_{2A}^{\gamma,Z}\gamma^5]\}$ • Studies at threshold: $v_t = (1 - \frac{8}{3} \sin^2 \theta_W)$ via A_{LR} $\Rightarrow \Delta A_{LR}/A_{LR} \sim \Delta P_{eff}/P_{eff}$ \Rightarrow (80%,0) \rightarrow (80%,60%): factor 3! • Studies at $\sqrt{s} = 500$ GeV: only for P_{e^-} so far!!! estimated: \Rightarrow (80%,0) \rightarrow (80%,60%): \sim factor 3!

true simulation still missing!

Form factor	SM value	$\sqrt{s} =$	$500{ m GeV}$	$\sqrt{s} =$	$= 800 \mathrm{GeV}$
		p = 0	p = -0.8	p=0	p = -0.8
F_{1V}^Z	1		0.019		
F_{1A}^Z	1		0.016		
$F_{2V}^{\gamma,Z} = (g-2)^{\gamma,Z}{}_t$	0	0.015	0.011	0.011	0.008
$\operatorname{Re}F_{2A}^{\gamma}$	0	0.035	0.007	0.015	0.004
$\operatorname{Re} d_t^{\gamma} \ [10^{-19} e \ \mathrm{cm}]$	0	20	4	8	2
$\operatorname{Re} F^Z_{2A}$	0	0.012	0.008	0.008	0.007
$\operatorname{Re} d_t^Z [10^{-19} \text{ e cm}]$	0	7	5	5	4
$\operatorname{Im} F_{2A}^{\gamma}$	0	0.010	0.008	0.006	0.005
$\operatorname{Im} F_{2A}^Z$	0	0.055	0.010	0.037	0.007
F_{1R}^W	0	0.030	0.012		
$1mF_{2R}^W$	0	0.025	0.010		

 \Rightarrow Gain of about a factor 3 with P_{e^-} and $P_{e^+}!$

Limits for flavour-changing neutral top-couplings Processes: top pair production or singe top production


- Single top:
 - \rightarrow more sensitive
- top pairs+decays:
 - \rightarrow better for disentangling
- Results:

vector couplings:

(80%,0)→(80%,45%): ~ 1.7

tensor couplings:

(80%,0)→(80%,45%): ~ 1.8

 \Rightarrow With (80%, 45%) ILC₅₀₀ extends LHC (w.r.t. γ_{μ})

(the ILC is anyway superior for tensor coupling)

Beam polarization for SM Higgs searches

Z

m

Light Higgs, $m_H = 130$ GeV:

 \rightarrow HZ and $H \nu \bar{\nu}$ similar rates

 P_{e^-} , P_{e^+} needed for:

- a) separation
- b) background supp.

 $\Rightarrow \sigma(HZ)/\sigma(H\nu\nu)$:

improves by factor 4

(+80%,0)→ (+80%, -60%)

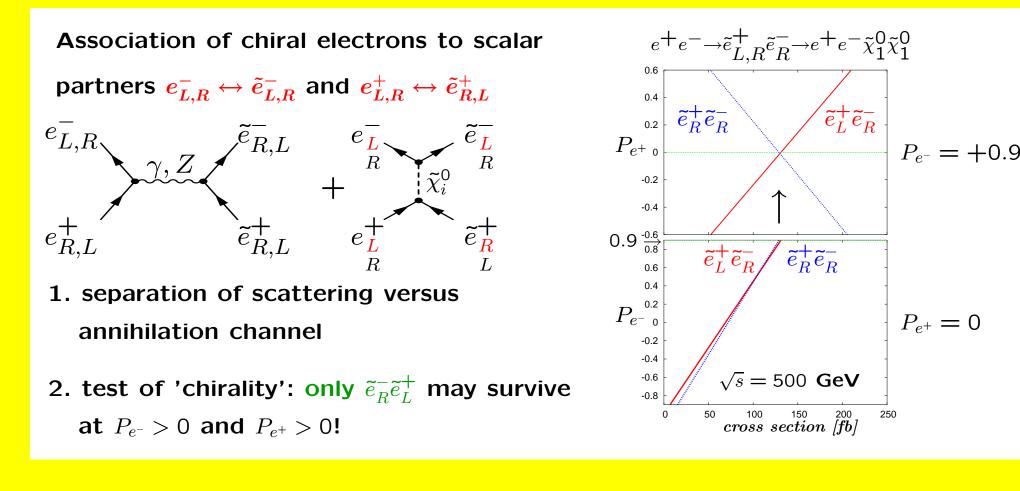
Configuration	Scaling	factors
$(P_{e^{-}}, \bar{P}_{e^{+}})$	$e^+e^- \rightarrow H \nu \bar{\nu}$	$ e^+e^- \rightarrow HZ$
(+80%, 0)	0.20	0.87
(-80%, 0)	1.80	1.13
(+80%, -60%)	0.08	1.26
(-80%, +60%)	2.88	1.70

Coin with D

W

 D_{\perp} in addition to D_{\perp}

• side remark: *WW* background scales as $H\nu\bar{\nu}$:

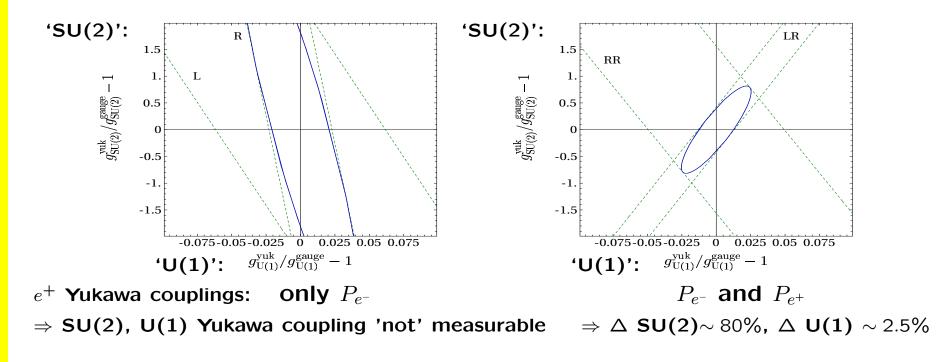

	Gain with Γ_{e^+}	Γ_{e^+} III (addition to Γ_{e^-}
	Signal 'S'	×2	×2
$\Rightarrow P_{e^+}$ always helps!	Background 'B'	×0.5	×2
E.	S/B	×4	Unchanged
	S/\sqrt{B}	$\times 2\sqrt{2}$	$\times \sqrt{2}$

 $\Rightarrow P_{e^-}$ and P_{e^+} very helpful for a light SM Higgs!

Gudi Moortgat-Pick

Now new physics: discovery+unravelling - SUSY (e.g.)

Selectron sector: Test of Susy quantum numbers

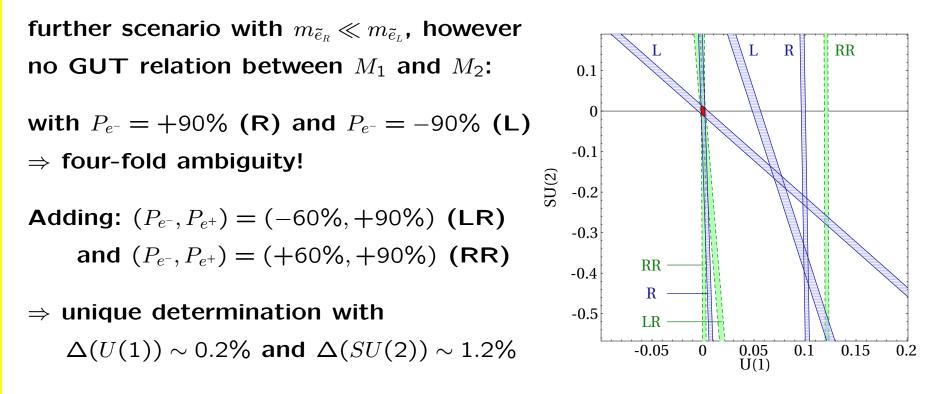

\Rightarrow Even high P_{e^-} not sufficient, but P_{e^+} needed!

Selectron sector, cont.

Supersymmetry: Test of Yukawa couplings

Test of SU(2), U(1) gauge couplings \equiv SUSY Yukawa couplings

- **1.** separation of the pairs $\tilde{e}_R^- \tilde{e}_R^+$ and $\tilde{e}_R^- \tilde{e}_L^+$
- 2. 'variation' of Yukawa couplings accepted within experimental uncertainty

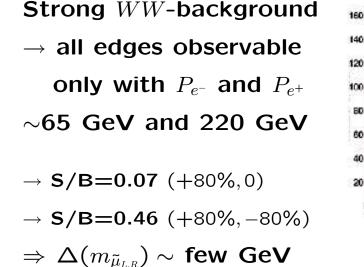


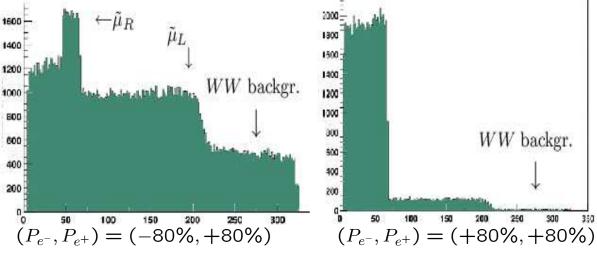
\Rightarrow Even high P_{e^-} not sufficient but P_{e^+} needed!

Selectron sector, cont.

Supersymmetry: Test of Yukawa couplings – next example

Determination of U(1), SU(2) Yukawa couplings of e^+ :


\Rightarrow Even high P_{e^-} not sufficient but P_{e^+} needed!


Smuon mass measurement

SUSY mass measurement in the continuum

• To optimize threshold scans \rightarrow continuum measurements important! Example: $e^+e^- \rightarrow \tilde{\mu}^+_{L,R}\tilde{\mu}^-_{L,R}$ \rightarrow only s-channel

Muon energy spectrum: $\mu^+\mu^-$ events (incl. W^+W^-) at $\sqrt{s} = 750 \ GeV$

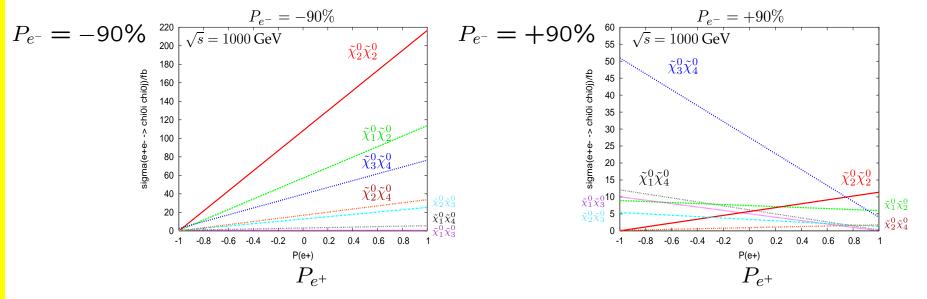
\Rightarrow Even high P_{e^-} not sufficient but P_{e^+} needed!

Third family: stop sector

Determination of stop mixing angle

Process $e^+e^- \rightarrow \tilde{t}_1 \tilde{t}_1$ (only γ , Z exchange): determination of $\theta_{\tilde{t}}$ or with A_{LR}^{obs} with $\sigma(\tilde{t}_1\tilde{t}_1)$ (b) ^{0.35} (a) -0.62 light colours '1', '3': $\rightarrow \mathcal{L}_{int} = 100 \text{ fb}^{-1}$ -0.64 0.3 dark colours '2', '4': 1 $\cos heta_{ ilde{t}}$ $_{\rm sqo}^{\rm sqo} W$ 0.25 -0.662 $\rightarrow \mathcal{L}_{int} = 500 \text{ fb}^{-1}$ -0.68 0.2 -0.7 202 196 198 200 204 -0.68-0.66-0.64 $(\pm 90\%, 0) \rightarrow (\pm 90\%, \mp 60\%)$: $m_{ ilde{t}_1} ~[ext{GeV}]$ $\cos \theta_{\tilde{t}}$ $\Delta \cos \theta_{\tilde{t}} \sim 3.6 \rightarrow 2.4\%$ with $\mathcal{L}_{int} = 100 \text{ fb}^{-1}$ $\Delta \cos \theta_{\tilde{t}} \sim 2.3 \rightarrow 1.4\%$ with $\mathcal{L}_{int} = 500 \text{ fb}^{-1}$ $\Delta \cos heta_{ ilde{t}} \sim 1.8
ightarrow 1.1\%$ $\Delta \cos heta_{ ilde{t}} \sim 1.1
ightarrow 0.7\%$

⇒ 'gain' factor about 1.6 for accuracy in $\cos \theta_{\tilde{t}}$ and about 1.4 for $\Delta m_{\tilde{t}}$


Gaugino/higgsino sector

SUSY: determination of the new parameters (already 105 new parameters in the 'minimal' model (MSSM)!)

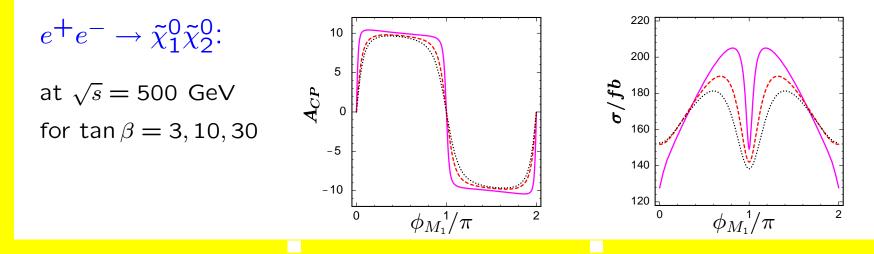
• complicated interplay of SUSY parameters

 \Rightarrow as many as possible observables needed!

exploit e.g. all possible cross sections of $\tilde{\chi}_i^0 \tilde{\chi}_i^0$: $\sigma(e^+e^- \rightarrow \tilde{\chi}_i^0 \tilde{\chi}_i^0)/\text{fb}$

• with P_{e^+} gain in cross sections up to factor ~ 2 wrt P_{e^-} only

\Rightarrow Both e^- and e^+ beams should be polarized!

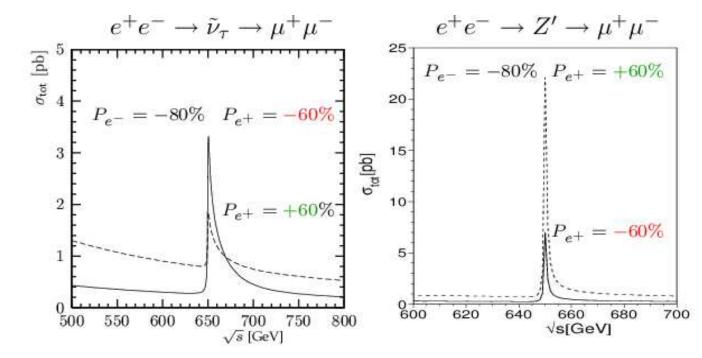

Gudi Moortgat-Pick

Azimuthal asymmetries with trans. polarization CP-odd observables in neutralino production

• Cross sections: $\sigma^T \sim P_{e^-}^T P_{e^+}^T \int d\phi Ref_1 \cos(\eta - 2\phi) + Imf_2 \sin(\eta - 2\phi)$ (η gives azimuthal orientation of transverse beams w.r.t. to fixed reference frame)

 \Rightarrow both beams have to polarized, otherwise no contribution $(m_e \rightarrow 0!)$

- CP-odd terms are $\sim \sin(\eta 2\phi)$
 - \rightarrow Dirac case: in $\tilde{\chi}_i^+ \tilde{\chi}_j^-$ production CP-odd terms $\sim \sin(\eta 2\phi)$ vanish!
 - → Majorana case: in $\tilde{\chi}_i^0 \tilde{\chi}_j^0$ production CP-odd terms~ sin($\eta 2\phi$) contribute! (because of t, u channel)


 \Rightarrow Rather large A_{CP} expected, even for small CP-phases!

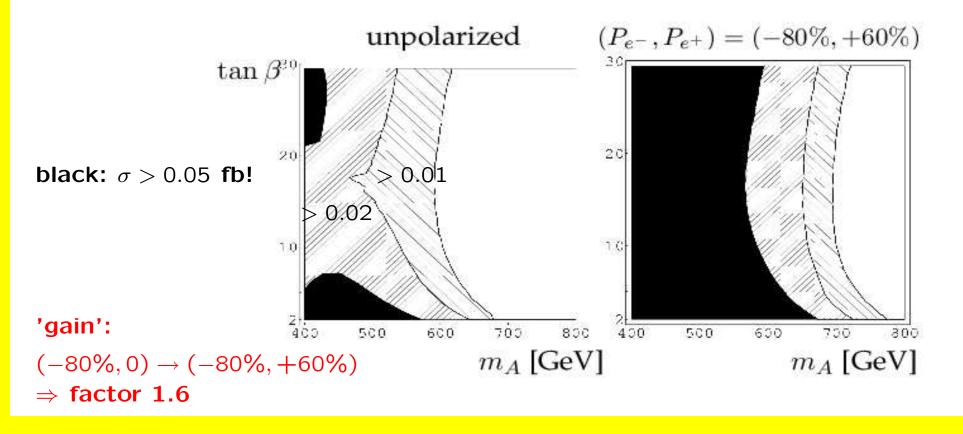
Extended SUSY model: R-parity violation

R-parity violation: single $\tilde{\nu}$ production in s-channel

• Process
$$e^+e^- \rightarrow \tilde{\nu}_{\tau} \rightarrow \mu^+\mu^-$$
 (only s-channel γ , Z, $\tilde{\nu}_{\tau}$ exchange)

 \Rightarrow 'spin 0- $\tilde{\nu}' \rightarrow$ favours LL configuration, but e.g. Z' in SSM favours LR!

• direct test of spin in resonance production

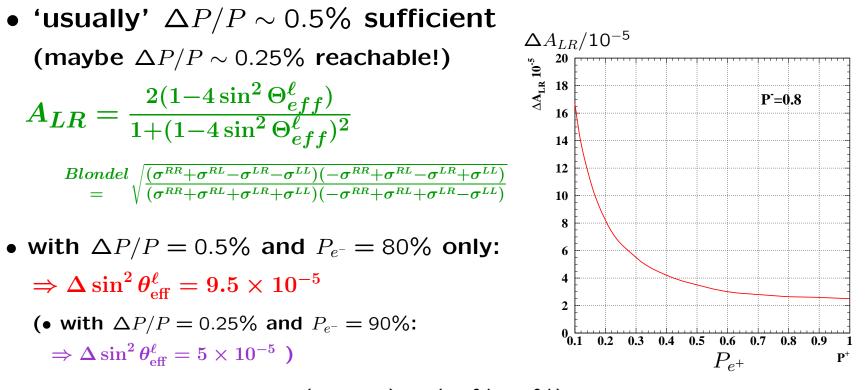

\Rightarrow Both e^- and e^+ beams should be polarized!

Gudi Moortgat-Pick

SUSY Higgs production

Heavy Higgs production in decoupling regime:

• Process: single Higgs in $e^+e^- \rightarrow \nu \bar{\nu} H$ for $m_A \gg m_Z$ (rare process, since coupling (H,gauge bosons) suppressed!)

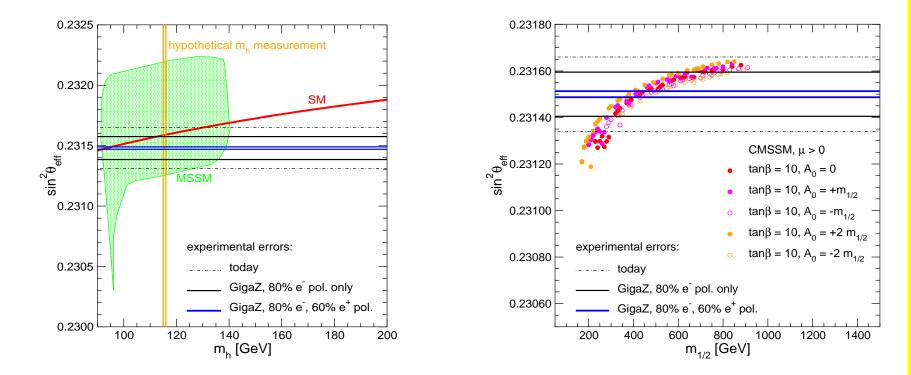


 \Rightarrow Both e^- and e^+ beams should be polarized for such rare processes!

Gudi Moortgat-Pick

High-presicsion SM tests at GigaZ/WW threshold with high \mathcal{L} -upgrade option at the ILC-

Measurement of $\sin^2 \theta_{\text{eff}}^{\ell}$ in $e^+e^- \to Z \to f\bar{f}$:


• with Blondel scheme: $(P_{e^-}, P_{e^+}) = (80\%, 60\%)$: $\Rightarrow \Delta \sin^2 \theta_{\text{eff}}^{\ell} = 1.3 \times 10^{-5}$

 \Rightarrow Both e^- and e^+ beams polarized needed to reach desired precision!

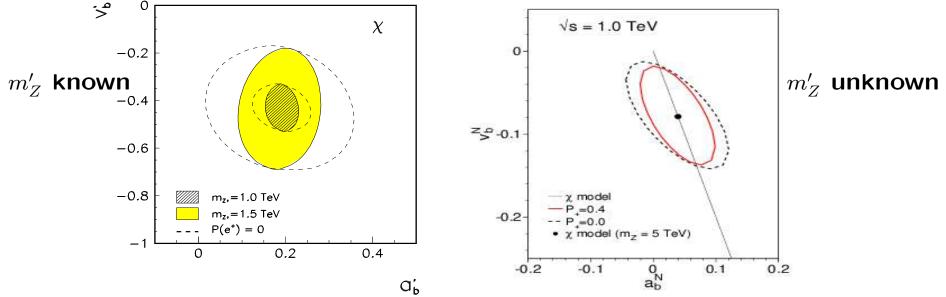
Impact of GigaZ for SUSY searches

Gain of about one order of magnitude in $\Delta \sin^2 \theta_{eff}$:

 \Rightarrow Prediction/constaints for m_h and $m_{1/2}$

• 'gain': bounds on SM $m_H \sim$ order of magnitude, on $m_{1/2} \sim$ factor 5!

 \Rightarrow Both e^- and e^+ beams polarized to exploit GigaZ constraints!


Gudi Moortgat-Pick

Aspen, Sep. 2005

Some more 'non-SUSY' examples: indirect searches Who guarantees that we will ever reach the new heavy scale? ...

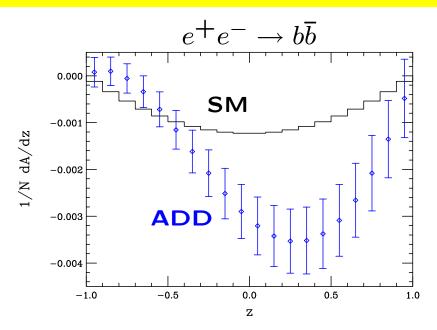
 \Rightarrow indirect searches important!

• e.g. in $e^+e^- \rightarrow f\bar{f}$ searches for Z', extra dimensions, etc.

 \rightarrow determination of couplings and mass reconstruction

 \rightarrow gain factor with $P_{e^+} \sim 1.6$ cf. P_{e^-} only (reduction of systematic error!)

• e.g. P_{e^+} decisive for model-independent bounds in CI


\Rightarrow Both e^- and e^+ beams should be polarized!

Further gain for indirect searches

With transversely polarized beams:

 \rightarrow exploit azimuthal asymmetries also for indirect searches!

 distinction between SM and different models of large extra dimensions!

- access to new CP-violating kind of interactions in $t\bar{t}$, γZ , W^+W^-
 - \rightarrow unique access to \Re parts of CP-sensitive couplings!
- ⇒ Transversely polarized beams are very effective also for indirect seaches w/wo CP-violation → both e^- and e^+ beams polarized required!

Possible interactions: pol-dependences in general

Which effects are possible? $|M|^2 \sim \bar{v}(\lambda_{e^+})\Gamma u(\lambda_{e^-})\bar{u}(\lambda_{e^-}')\Gamma^{\dagger}v(\lambda_{e^+}')$

Intera	action structure	Longit	udinal	Trans	verse	P, S = (pseudo)scalar
Г	L_t	Bilinear	Linear	Bilinear	Linear	A, V = (axial) vector
S	S	$\sim P_{e^-}P_{e^+}$	_	$\sim P_{e^-}^T P_{e^+}^T$ $\sim P_{e^-}^T P_{e^+}^T$	_	
Р	S	_	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	—	T = tensor
V,A	S	_	—	_	$\sim P_{e^{\pm}}^{T}$	
Т	S	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$		
Ρ	Р	$\sim P_{e^-}P_{e^+}$	_	$\sim P_{e^-}^T P_{e^+}^T$	—	
V,A	Р	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$ \sim P_{e^-}^T P_{e^+}^T \\ \sim P_{e^-}^T P_{e^+}^T $	$\sim P_{e^{\pm}}^{T}$	
Т	Р	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$		
V,A	V,A	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	_	
Т	V,A	-	—	—	$\sim P_{e^{\pm}}^{T}$	
Т	Т	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	_	

 \Rightarrow impact of beam polarization depends on kind of interaction(s)

• with P_{e^-} and P_{e^+} much higher 'flexibility' with regard to NP candidates for direct as well as indirect searches!

Summary table from the report (hep-ph/0507011)

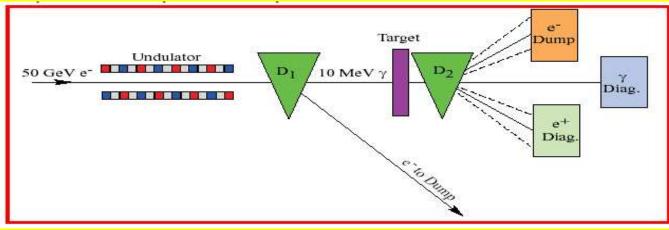
Case	Effects	Gain& Essentiality
SM:		
top threshold	Improvement of coupling measurement	factor 3
$t\bar{q}$	Limits for FCN top couplings reduced	factor 1.8
\overline{CPV} in $t\overline{t}$	Azimuthal CP-odd asymmetries give	$P_{e^{-}}^{\mathrm{T}} P_{e^{+}}^{\mathrm{T}}$ required
	access to S- and T-currents up to 10 TeV	
W^+W^-	Enhancement of $\frac{S}{B}$, $\frac{S}{\sqrt{B}}$	up to a factor 2
	TGC: error reduction of $\Delta \kappa_{\gamma}, \Delta \lambda_{\gamma}, \Delta \kappa_{Z}, \Delta \lambda_{Z}$	factor 1.8
	Specific TGC $\tilde{h}_{+} = \operatorname{Im}(g_{1}^{\mathrm{R}} + \kappa^{\mathrm{R}})/\sqrt{2}$	$P_{e^{-}}^{\mathrm{T}} P_{e^{+}}^{\mathrm{T}}$ required
CPV in γZ	Anomalous TGC $\gamma\gamma Z, \gamma ZZ$	$P_{e^{+}}^{T} P_{e^{+}}^{T}$ required
HZ	Separation: $HZ \leftrightarrow H\bar{\nu}\nu$	factor 4 with RL
	Suppression of $B = W^+ \ell^- \nu$	factor 1.7
SUSY:	Suppression D = N & D	14001 117
<i>ē</i> +ē−	Test of quantum numbers L, R	P_{e^+} required
	and measurement of e^{\pm} Yukawa couplings	r _e + required
μμ	Enhancement of S/B , $B = WW$	factor 5-7
popo -	$\Rightarrow m_{\mu_{L,R}}$ in the continuum	incor on
$\tilde{t}_1 \tilde{t}_1 (\tilde{b}_1 \tilde{b}_1, \tilde{\tau}_1 \tilde{\tau}_1)$	Improvement in determination of m_i , and θ_i	factor 1.4
$HA, m_A > 500 \text{ GeV}$	Access to difficult parameter space	factor 1.6
$\tilde{\chi}^+ \tilde{\chi}^-, \tilde{\chi}^0 \tilde{\chi}^0$	Enhancement of $\frac{S}{B}$, $\frac{S}{\sqrt{B}}$	factor 2-3
	Separation between SUSY models,	
	'model-independent' parameter determination	
CPV in $\tilde{\chi}_1^0 \tilde{\chi}_1^0$	Direct CP-odd observables	$P_{s}^{\mathrm{T}} P_{s+}^{\mathrm{T}}$ required
RPV in $\tilde{\nu}_{\tau} \rightarrow \ell^+ \ell^-$	Enhancement of S/B , S/\sqrt{B}	factor 10 with LL
2022-00 AV 2022-11-246 - 11-11-254 - 12-25	Test of spin quantum number	
ED:		
$G\gamma$	Enhancement of S/B , $B = \gamma \nu \bar{\nu}$,	factor 3
$e^+e^- \rightarrow f\bar{f}$	Distinction between ADD and RS modes	$P_{e^{-}}^{\mathrm{T}}P_{e^{+}}^{\mathrm{T}}$ required
Z':		
$e^+e^- \rightarrow f\bar{f}$	Measurement of Z' couplings	factor 1.5
CĿ		······································
$e^+e^- \rightarrow q\bar{q}$	Model independent bounds	P_{e^+} required
Precision measuren	nents of the Standard Model at GigaZ:	
Z-pole	Improvement of $\Delta \sin^2 \theta_W$	factor 5–10
279) 	Constraints on CMSSM space	factor 5
$CPV \text{ in } Z \rightarrow b\bar{b}$	Enhancement of sensitivity	factor 3

Last-but-not-least: a few technical remarks (Snowmass'05)

- How to get polarized e^- ?
- → polarized laser beam on thin strained GaAs lattice (as at SLC) recent results indicate: $|P_{e^-}| = 90\%$ achievable
- Which kind of e^+ sources are under discussion?
- a) (unpolarized) conventional source: 6 GeV e^- beam on a thick target,
 - e^+ from electromagnetic cascade in target
- b) (polarized) undulator-based source: > 150 GeV e^- through 200m undulator,

 γ on thin target, e^+ from pair production

- c) (polarized) laser-compton-based source: backscattering of laser off e^- beam, γ on thin target, e^+ from pair production
- Challenges for e^+ source at a linear collider?
- \rightarrow huge number required which have to fit within damping ring acceptance $\rightarrow \sim 10^{10}$ /per bunch particles needed


... not an easy game ...

What might be possible problems?

- conventional source: high 'thermal' stress at the target and capture efficiency lower ...
- undulator-based source: needs 150 GeV e^- beam
 - → operation seems to be linked to whole ILC: commissioning, operation problems?
 - \rightarrow no, can be compensated with keep-alive beam
 - \rightarrow (reliability study of T. Himel, in SLAC+DESY collaboration)
- laser-based source: still R&D problems to get the high intensity
- upgrade to 1 TeV?
 - \Rightarrow no problem for any of the sources!!!

Status of the possible e^+ choices

- Conventional positron source at the SLC:
 - $\Rightarrow e^+$ source with highest intensity operated so far
- **Prototype undulator-based source:** currently running project 'E166'@SLAC

first run: excellent data!

2nd (final) run: now!

• Helical undulator designs in UK:

 \Rightarrow ILC prototypes under construction

• Prototype of laser-based source at KEK currently running: $\Rightarrow \gamma$ - and e^+ polarization as predicted! News from the way to the ILC with polarized e^- and e^+ – Summary talk of Nick Walker at Snowmass'05–

Baseline / Alternative: some definitions

- Primary GDE Goal:
 - <u>Reference Design Report</u> including costs end 2006
- Intermediate goal (follows from primary)
 - Definition of a <u>Baseline Configuration</u> by the <u>end of 2005</u>; this
 - will be designed to during 2006
 - will be the basis used for the cost estimate
 - will evolve into the machine we will build

26.08.2005

Nick Walker - 2nd ILC Workshop - Snowmass - Colorado

Positron Source

WG3a

Risks & Concerns

ITEM	Conventional	Undulator	Compton	Comment
L-band warm structure 1ms operation	1	1	1	It is likely to be sale according to the calculation.
Target thermal damage	1	0	0	It can be relieved by multi-targets.
Target radiation damage	0	1	0	It can be controlled by periodic maintenance.
Thermal load to the capture section	1	0	0	75kWim acceptable?
Damage or failure by fast ion instability in the undulator.	0	1	0	Estimates look ok but more investigation needed
Field quality of helical undulator	0	1	0	Helical prototype. Can be solved with the planar undulator.
Positron Stacking in DR	0	0	2	Need investigation
e beam stability in Compton Ring	0	0	2	Need investigation
Vacuum pumping	0	1	0	Needs vacuum specification to check if problem
Stability of integration of optical cavities	0	0	2	It is going to be demonstrated experimentally with 2 cavities.
Mechanical failure on the rotation target	2	1	0	Need investigation/demonstration
Kicker difficulty	1	1	0	Undulator scheme need special care for the Injection kicker.

37

What was the recommendation at Snowmass 2005?

Positron Source

Undulator source

- Uses main electron beam (150-250 GeV)
- Coupled operation (8)
- Efficient source ©
- Relatively low neutron activation ©
- Polarisation ©

Laser Compton source

- Independent polarised source ©
- Relatively complex source
- Multi-laser cavity system required
- Damping ring stacking required
- Large acceptance ring (for stacking) (8)
- Needs R&D
- Conventional Source
 - Single target solution exists
 - Close to (at?) limits ③
 - Independent source ©

Pre-damping ring not required ©

26.08.2005

Nick Walker - 2nd ILC Workshop - Snowmass - Colorado

WG3a recommendation for baseline

Will need 'keep alive source' due reliability issues

WG3a recommended alternative.

Strong R&D programme needed

Currently on-hold as a backup solution

Concluding remarks

- Results of the report: 'the physics case for polarized e⁻ and e⁺
 ★ many≡ (n + 1) examples from different physics scenarios!
 - ⇒ Report should be seen as contemporary status report! still studies ongoing, new ideas+examples coming up
- *P_{e+}* ⇒ only gains, independent in which direction NP points
 ★ key additional observables for unravelling the underlying physics: kind of interaction, chirality, particle properties, parameter det.,etc.
 - * significant improvement for model-independent approaches in direct as well as indirect searches for NP
 - **\star** Analyzing NP might be challenging \rightarrow best of all tools needed!
- P_{e^+} crucial preparation for 'being prepared for the Unexpected'!
- \Rightarrow full potential of the ILC could only be realized with P_{e^-} and $P_{e^+}!$ expected: $P_{e^-} = \pm 90\%$, $P_{e^+} = \pm 60\%$ and $\Delta P_{\pm}/P_{\pm} = 0.25\%$
- undulator-based (polarized) e^+ source now in the baseline design! \rightarrow laser-based (polarized) e^+ source as alternative R&D design