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Outline

Goal of the Linear Collider

‘Precision physics in the energy range between LEP and O(1 TeV)’

* High precision measurements: tests of the SM

* Discovery of New Physics (NP) (together with Hadron Colliders)

* ‘Unveiling’ the structure of NP: precise determination!

⇒ Beam polarization = decisive tool!

1. Introduction: overview and some definitions

2. Statistical arguments for polarisation of both beams

3. Use of polarised beams e.g. for Susy searches

4. Use of transversely polarised beams

5. Some technical details for polarising e− and e+ at a LC



Introduction: Overview

History: First polarised e− beam at a LC: 3-km SLC at SLAC (1992-98)

→ P (e−) = [60%,78%]

Planned design for a future LC:

• polarized electron source: similar design as for SLC!

→ strained photocathode technology

⇒ P (e−) ≈ 80% expected

• polarized positrons at a LC: complete novelty!

→ helical undulator: source for polarized γ

→ photoproduction of polarized e+:

⇒ P (e+) ≈ 40− 60% expected

• Measurement of polarization:

Compton polarimetry: ∆P (e±) ≤ 0.5%

(M6 oller polarimetry: under discussion)

’Blondel scheme’: high precision polarimetry



Some definitions

• Formalism: Use e.g. helicity spinors u(p, λ), v(p, λ) → density matrix

• Definition: Basis of Spinvektors sa, a = 1,2,3 with (sap) = 0:

build ‘right-hand-system’ in the CMS of e−(p1)e
+(p2)→ X(p3)Y (p4)

longitudinal Spinvektors: s3µ(p1,2) := 1
m1,2

(| ~p1,2|, Ep̂1,2)

transverse Spinvektors: s2µ(p1) := (0, ~p1 × ~p3), s2µ(p2) = s2µ(p1)

s1µ(p1) := (0, ~p1 × ~s2(p1)), s1µ(p2) = −s1µ(p1)

~p1 ~p2

~p4

~p3

~s2 ~s2

~s3 ~s3

~s1

~s1

• Definition: ‘left-handed’and ‘right-handed’ ≡ with respect to p̂

If Spinvektor ~s3 =
( parallel ~p
antiparallel ~p

)

≡
(

‘right-handed’: P>0
‘left-handed’: P<0

)



General remarks about the coupling structure

Def.: left-handed ≡ P (e±) < 0 right-handed ≡ P (e±) > 0

Which configurations are possible in principle?

s–channel:

e−

e+

J=1 ← only from RL,LR: SM (γ, Z)

J=0 ← only from LL,RR: NP!

⇒ In principle: P (e−) fixes also helicity of e+!



Which configurations are possible in the crossed channels?

t–channel:

��	

depends on P (e+)!

@@I

depends on P (e−)!

��
��e+

e−

a

c

b

��
��

⇒ helicity of e− not coupled

with helicity of e+!

Two examples:

a) Single W production

��	

only influenced by P (e+)!

��
��e+

e−

ν̄

e−

W+

γ

b) Bhabha scattering

⇒ γ, Z exchange in s–channel:

selects LR, RL

⇒ γ, Z exchange in t–channel:

LL,RR possible!

unpolarised 4.50 pb

Pe− = −80% 4.63 pb

Pe− = −80%, Pe+ = −60% 4.69 pb

Pe− = −80%, Pe+ = +60% 4.58 pb



Statistical arguments for polarisation of both beams

P (e+) can increase the effects:

• Effective polarisation:

σ = (1− Pe−)(1 + Pe+)σLR + (1 + Pe−)(1− Pe+)σRL

= (1− Pe+Pe−)

[

(1 +
Pe+ − Pe−

1− Pe−Pe+
)σLR + (1 +

Pe− − Pe+

1− Pe−Pe+
)σRL

]

= (1− Pe+Pe−)
[

(1 + Peff)σRL + (1− Peff)σLR

]

• Effective luminosity ≡ fraction of colliding particles

Leff =
1

2
(1− Pe+Pe−)



Statistical arguments

• Effective polarization

Peff := (Pe− − Pe+)/(1− Pe−Pe+)

= (#LR−#RL)/(#LR + #RL)

• Fraction of colliding particles

Leff/L := 1
2(1− Pe−Pe+) = (#LR + #RL)/(#all)

Colliding particles:

RL LR RR LL Peff Leff/L
P (e−) = 0, 0.25 0.25 0.25 0.25 0. 0.5

P (e+) = 0

P (e−) = −1, 0 0.5 0 0.5 −1 0.5

P (e+) = 0

P (e−) = −0.8, 0.05 0.45 0.05 0.45 −0.8 0.5

P (e+) = 0

P (e−) = −0.8, 0.02 0.72 0.08 0.18 −0.95 0.74

P (e+) = +0.6

⇒ Enhancing of Leff with P (e−) and P (e+)!



What else do we gain with Pe+ and using Peff?

→ systematic error of polarisation determination decreases strongly!:
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∆Peff/Peff1%

0.1%

0.5%

Hirose

∆Peff = (
∂Peff

∂Pe−
)∆Pe− + (

∂Peff

∂Pe+

)∆Pe+

= (
∂Peff

∂Pe−
)(

∆Pe−

Pe−
)Pe− + (

∂Peff

∂Pe+

)(
∆Pe+

Pe+

)Pe+

Two approximations (here):

• linear: systematics � statistics

• ∆Pe−/Pe− = ∆Pe+/Pe+ ≡∆P/P

⇒ ∆Peff
Peff

=
1+Pe−P

e+

1−Pe−P
e+

(∆P
P )



Statistics: Suppression of WW and ZZ production

WW , ZZ production = large background for NP searches!

W− couples only left–handed:

→ WW background strongly suppressed with right polarized beams!

Scaling factor= σpol/σunpol for WW and ZZ:

Pe− = ∓80%, Pe+ = ±60% e+e−→W+W− e+e−→ ZZ

(+0) 0.2 0.76

(−0) 1.8 1.25

(+−) 0.1 1.05

(−+) 2.85 1.91



Further statistics: Using the Blondel Scheme

Process: e+e−→ Z → ff̄ at the Z-pole (s-channel)

Measurement of effective mixing angle sinΘ`
eff via ALR:

σ = σu[1− Pe−Pe+ + ALR(Pe+ − Pe−)], ALR =
2(1− 4 sin2 Θ`

eff)

1 + (1− 4 sin2 Θ`
eff)

2

Gain in statistical power of ‘Z-factory’ only if ∆ALR(pol) < ∆ALR(stat)!

⇒∆Peff ∼ 10−4 needed! . . . not possible with only polarimetry.....

• Blondel Scheme: ALR =

√

(σRR+σRL−σLR−σLL)(−σRR+σRL−σLR+σLL)
(σRR+σRL+σLR+σLL)(−σRR+σRL+σLR−σLL)

⇒ ∆ALR ∼ 10−4

∆sin2 θ`
eff = 0.000013

For comparison:

At LEP/Tev./LHC: ∆sin2 θ`
eff = 0.00017

⇒ O of magnitude better!
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Use of polarised beams e.g. for Susy searches and model tests

E.g. test of the SUSY assumption:

SM ↔ SUSY have same quantum numbers!

⇒ e−L,R↔ ẽ−L,R and e+L,R↔ ẽ+R,L

Scalar partners ↔ chiral quantum numbers!

How to test this association?

Strategy: σ(e+e−→ ẽ+L,Rẽ−L,R) with polarized beams

e+R,L ẽ+R,L

e−L,R ẽ−R,L

γ, Z
+

e+L
R

ẽ+R
L

e−L
R

ẽ−L
R

⇒ t–channel: unique relation between chiral fermion ←→ scalar partner

→ t-channel: ẽ+
R ẽ−L −→ ẽ+

R ↔ ẽ−L
Use e.g. e+

L e−L
→ no s–channel



Physics Case for P (e+): Tests of Susy cont.

• precise analysis of non–standard couplings

Polarised cross sections: σ(e+e− → ẽ+
L,Rẽ−L,R)

Tricky case: mẽL
mẽR

close together:

mẽL
= 200 GeV, mẽR

= 190 GeV

→ same decay kinematics!
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In our example:

P (e−) = −80% but P (e+) = 0: no separation!

P (e−) = −80% and P (e+) = −40%: ratio 163 fb/66 fb!

⇒ Separation of ẽ−L ẽ+L and ẽ−L ẽ+R not possible with only P (e−)!



Physics Case for Polarised Positrons at a LC

• option of using transversely polarised beams!

Ratesare given by:

σ = (1−Pe+Pe−)σunp +(P L
e−−P L

e+)σL
pol +P T

e−P
T
e+σT

pol

⇒ only possible with both beam polarised!

Example here: e+e− → ff̄

Observable: azimuthal asymmetry

exact symmetric in the SM!

However: if e.g. large extra dimensions

→ Graviton Spin=2 (‘tensor’) exchange

→ asymmetric behaviour!!!!

⇒ clear separation of different models of NP

√
s = 500 GeV

P T(e−) = 80%, P T(e+) = 60%

ADD model

SM

Rizzo

(→ see also e.g. TESLA TDR, JLC Roadmap, Snowmass ’01 Resource Book, Moortgat-Pick ’03, etc. )

⇒ Polarised e+ in addition to polarised e− needed at a LC



Further examples: Tranverse beams and their impact on . . .

• the process e+e− →W+W−:
⇒ azimuthal asymmetry projects out W+

L W−L
at high energy asymmetry peaks a ‘large’ polar angles (not in beam direction!)

⇒ sensitive to effects of the origin of electroweak symmetry breaking

without complicated final spin state analysis!

• the construction of CP violating oservables:

⇒matrix elements |M |2 ∼ C×∆(α)∆∗(β)×S(C=coupl., ∆=prop., S=momenta)

if CP violation: contributions of Im(C)×Im(S)(e.g. contributions of ε tensors!)

⇒ azimuthal dependence (‘not only in scattering plane’)

⇒ observables are e.g. asymmetries of CP-odd quantities: ~pa(~pb × ~pc)

Remember: ~s2µ := ~p1 × ~p3 perpendicular scattering plane, CP even

~s1µ := ~p1 × ~s2(p1) transverse in plane, CP odd

⇒ Combination of transverse beam polarisation provide CP odd observables!



Some technical details for polarising e− and e+ at a LC

Remember again: First polarised e− beam at a LC at SLAC (1992-98)

with P (e−) = [60%,78%]

How did they polarise the e−?
→ circ. polarised light (Iz = +1 or −1)

on GaAs cathode

⇒ P−1 =
N+−N−
N++N−

= 3−1
3+1 = +0.5

How to get higher polarisation?

→ use strained lattice: grow GaAs on

substrate with diff. crystal spacing

⇒ removes degeneracy in lower level

If hν = [Eg, (Eg + δ)]:

→ in principle P−1 = 100% possible. . .

⇒ P−1 = 80− 90% expected at LC



How to polarise the e+ beam at a Linear Collider?

Complete novelty!!!

Principle (now quasi same design for all LC designs!)

• high energy beam (150-250 GeV) through helical undulator (∼ 100 m)

(TESLA baseline uses planar undulator anyway for production of unpol. e+)

→ circ. pol. photons with ∼ 20 MeV (TESLA) or ∼ 10 MeV (NLC)

→ pol. γ on target (Ti): conversion to pol. e+ (and e−)

Photon Pol. of Undulator radiation Polarisation transfer from γ → e+



‘Exciting’ R&D in the Polarisation Business in the next years

Demonstration experiment needed for P (e+): ‘proof of principle’

1. Approval (in June 2003!) of the international project E166@SLAC:

2. Superconducting helical undulator for the TESLA scheme



Summary of the Polarisation Lecture

Beam polarisation of e− and e+ is an important tool at a LC!

• Theo. tools: use helicity spinors u(p, λ), v(p, λ) and orthogonal basis

of spinvectors (sap) = 0

• Pheno. results: Focussing out the signals , background suppression,

analysis of chiral coupling structure , gain in statistics

• P (e+) needed: Electroweak precision tests with unprecedented accuracy!

• P (e+) needed: Discovery and ‘unveiling’ of SUSY and any NP

• P (e+) needed: additional gain in statistics,

better accuracy in determining Peff

• P (e+) needed: exploring transversely polarised beams (WLWL, CP, . . .)

• Techn. Realis. of a high P (e−) seems to be straight forward

• Techn. Realis. of P (e+) seems to work, but still an exciting challenge!

Further news and information, please have a look:

POWER working group: close contact between Th/Exp/Machine

(→ http://www.ippp.dur.ac.uk/˜gudrid/power)


