Beam Polarisation at the LC

Gudrid Moortgat-Pick IPPP Durham

Ambleside, 08/2003

Some references:

- F. Renard, Basics of Electron Positron Collisions
- H. Haber, *Spin Formalism and Applications to New Physics Searches*, Proc. of 21st SLAC Summer Inst. on Part. Phys., Stanford 1993
- T. Omori, 'A Polarized Positron Beam for Linear Colliders', KEK 98-237
- Further news, references and links: http://www.ippp.dur.ac.uk/~gudrid/power/

Outline

Goal of the Linear Collider

'Precision physics in the energy range between LEP and O(1 TeV)'

- * High precision measurements: tests of the SM
- * Discovery of New Physics (NP) (together with Hadron Colliders)
- * 'Unveiling' the structure of NP: precise determination!
- \Rightarrow Beam polarization = decisive tool!

- 1. Introduction: overview and some definitions
- 2. Statistical arguments for polarisation of **both beams**
- 3. Use of polarised beams e.g. for Susy searches
- 4. Use of transversely polarised beams
- 5. Some technical details for polarising e^- and e^+ at a LC

Introduction: Overview

History: First polarised e^- beam at a LC: 3-km SLC at SLAC (1992-98) $\rightarrow P(e^-) = [60\%, 78\%]$

Planned design for a future LC:

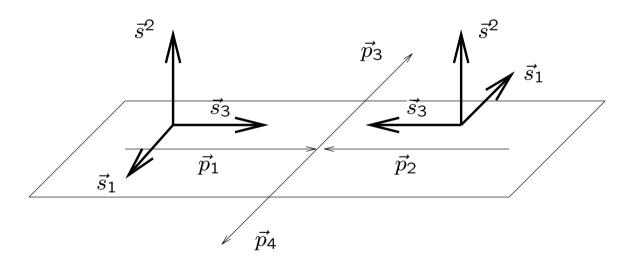
- polarized electron source: similar design as for SLC!
 - \rightarrow strained photocathode technology
 - $\Rightarrow P(e^{-}) \approx 80\%$ expected
- polarized positrons at a LC: complete novelty!
 - \rightarrow helical undulator: source for polarized γ
 - \rightarrow photoproduction of polarized e^+ :

 $\Rightarrow P(e^+) \approx 40 - 60\%$ expected

 Measurement of polarization: Compton polarimetry: ΔP(e[±]) ≤ 0.5% (M βler polarimetry: under discussion)
 'Blondel scheme': high precision polarimetry

Some definitions

- Formalism: Use e.g. helicity spinors $u(p,\lambda)$, $v(p,\lambda) \rightarrow density matrix$
- Definition: Basis of Spinvektors s^a , a = 1, 2, 3 with $(s^a p) = 0$: build 'right-hand-system' in the CMS of $e^-(p_1)e^+(p_2) \to X(p_3)Y(p_4)$ longitudinal Spinvektors: $s^{3\mu}(p_{1,2}) := \frac{1}{m_{1,2}}(|p_{1,2}|, E\hat{p}_{1,2})$ transverse Spinvektors: $s^{2\mu}(p_1) := (0, \vec{p_1} \times \vec{p_3}), \quad s^{2\mu}(p_2) = s^{2\mu}(p_1)$ $s^{1\mu}(p_1) := (0, \vec{p_1} \times \vec{s}^2(p_1)), \quad s^{1\mu}(p_2) = -s^{1\mu}(p_1)$



• Definition: 'left-handed' and 'right-handed' \equiv with respect to \hat{p} If Spinvektor $\vec{s}^3 = \begin{pmatrix} \text{parallel } \vec{p} \\ \text{antiparallel } \vec{p} \end{pmatrix} \equiv \begin{pmatrix} \text{'right-handed': } P > 0 \\ \text{'left-handed': } P < 0 \end{pmatrix}$

General remarks about the coupling structure

Def.: left-handed $\equiv P(e^{\pm}) < 0$ right-handed $\equiv P(e^{\pm}) > 0$

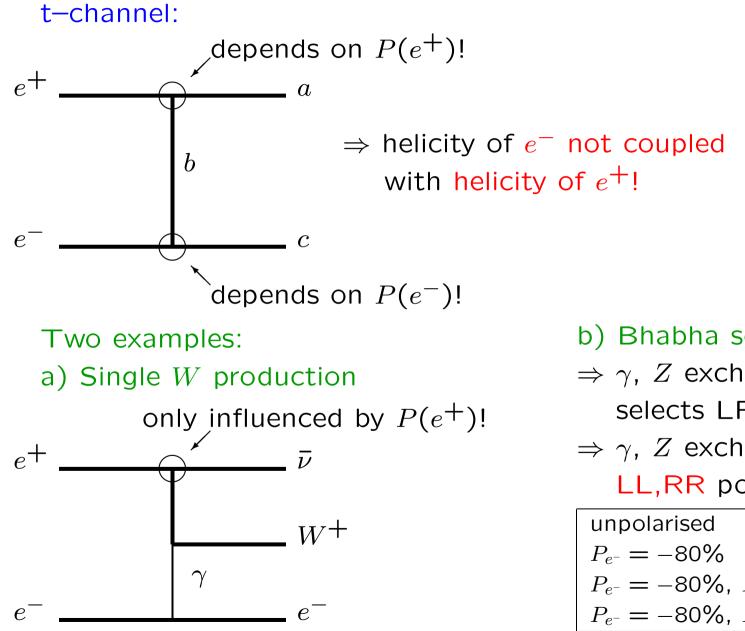
Which configurations are possible in principle? s-channel:

$$e^+$$

 $J=1$ \leftarrow only from RL,LR: SM (γ , Z)
 $J=0$ \leftarrow only from LL,RR: NP!
 e^-

 \Rightarrow In principle: $P(e^{-})$ fixes also helicity of $e^{+}!$

Which configurations are possible in the crossed channels?



- b) Bhabha scattering
- $\Rightarrow \gamma$, Z exchange in s-channel: selects LR, RL
- $\Rightarrow \gamma$, Z exchange in t-channel: LL,RR possible!

unpolarised	4.50 pb
$P_{e^-} = -80\%$	4.63 pb
$P_{e^-} = -80\%$, $P_{e^+} = -60\%$	4.69 pb
$P_{e^-} = -80\%$, $P_{e^+} = +60\%$	4.58 pb

Statistical arguments for polarisation of both beams

 $P(e^+)$ can increase the effects:

• Effective polarisation:

$$\sigma = (1 - P_{e^{-}})(1 + P_{e^{+}})\sigma_{LR} + (1 + P_{e^{-}})(1 - P_{e^{+}})\sigma_{RL}$$

$$= (1 - P_{e^{+}}P_{e^{-}})\left[(1 + \frac{P_{e^{+}} - P_{e^{-}}}{1 - P_{e^{-}}P_{e^{+}}})\sigma_{LR} + (1 + \frac{P_{e^{-}} - P_{e^{+}}}{1 - P_{e^{-}}P_{e^{+}}})\sigma_{RL}\right]$$

$$= (1 - P_{e^{+}}P_{e^{-}})\left[(1 + P_{eff})\sigma_{RL} + (1 - P_{eff})\sigma_{LR}\right]$$

• Effective luminosity \equiv fraction of colliding particles

$$\mathcal{L}_{eff} = \frac{1}{2} (1 - P_{e^+} P_{e^-})$$

Statistical arguments

• Effective polarization

$$P_{eff} := (P_{e^-} - P_{e^+})/(1 - P_{e^-} P_{e^+})$$

= (#LR - #RL)/(#LR + #RL)

• Fraction of colliding particles $\mathcal{L}_{eff}/\mathcal{L} := \frac{1}{2}(1 - P_{e^-}P_{e^+}) = (\#LR + \#RL)/(\#all)$

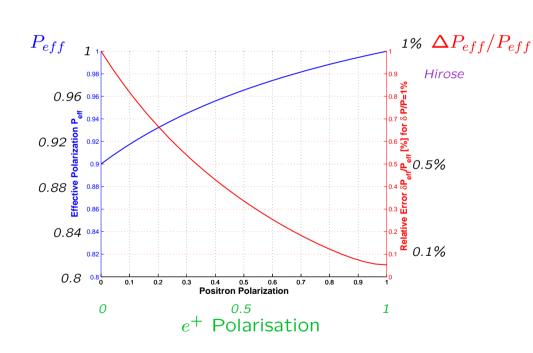
Colliding particles:

	RL	LR	RR	LL	P_{eff}	$\mathcal{L}_{eff}/\mathcal{L}$
$P(e^{-})=0,$	0.25	0.25	0.25	0.25	0.	0.5
$P(e^+) = 0$						
$P(e^{-}) = -1,$	0	0.5	0	0.5	-1	0.5
$P(e^+) = 0$						
$P(e^{-}) = -0.8$,	0.05	0.45	0.05	0.45	-0.8	0.5
$P(e^+) = 0$						
$P(e^{-}) = -0.8,$	0.02	0.72	0.08	0.18	-0.95	0.74
$P(e^+) = +0.6$						

 \Rightarrow Enhancing of \mathcal{L}_{eff} with $P(e^{-})$ and $P(e^{+})!$

What else do we gain with P_{e^+} and using P_{eff} ?

 \rightarrow systematic error of polarisation determination decreases strongly!:



$$\Delta P_{eff} = \left(\frac{\partial P_{eff}}{\partial P_{e^-}}\right) \Delta P_{e^-} + \left(\frac{\partial P_{eff}}{\partial P_{e^+}}\right) \Delta P_{e^+}$$
$$= \left(\frac{\partial P_{eff}}{\partial P_{e^-}}\right) \left(\frac{\Delta P_{e^-}}{P_{e^-}}\right) P_{e^-} + \left(\frac{\partial P_{eff}}{\partial P_{e^+}}\right) \left(\frac{\Delta P_{e^+}}{P_{e^+}}\right) P_{e^+}$$

Two approximations (here):

• linear: systematics \gg statistics

•
$$\Delta P_{e^-}/P_{e^-} = \Delta P_{e^+}/P_{e^+} \equiv \Delta P/P$$

$$\Rightarrow \frac{\Delta P_{eff}}{P_{eff}} = \frac{1 + P_{e} - P_{e} +}{1 - P_{e} - P_{e} +} (\frac{\Delta P}{P})$$

Statistics: Suppression of WW and ZZ production

WW, ZZ production = large background for NP searches!

 W^- couples only left-handed:

 \rightarrow WW background strongly suppressed with right polarized beams!

Scaling factor = $\sigma^{pol}/\sigma^{unpol}$ for WW and ZZ:

$P_{e^-} = \mp 80\%, P_{e^+} = \pm 60\%$	$e^+e^- \rightarrow W^+W^-$	$e^+e^- \rightarrow ZZ$
(+0)	0.2	0.76
(-0)	1.8	1.25
(+-)	0.1	1.05
(-+)	2.85	1.91

Further statistics: Using the Blondel Scheme

Process: $e^+e^- \rightarrow Z \rightarrow f\bar{f}$ at the Z-pole (s-channel)

Measurement of effective mixing angle $\sin \Theta_{eff}^{\ell}$ via A_{LR} :

$$\sigma = \sigma_u [1 - P_{e^-} P_{e^+} + A_{LR} (P_{e^+} - P_{e^-})], \qquad A_{LR} = \frac{2(1 - 4\sin^2 \Theta_{eff}^{\ell})}{1 + (1 - 4\sin^2 \Theta_{eff}^{\ell})^2}$$

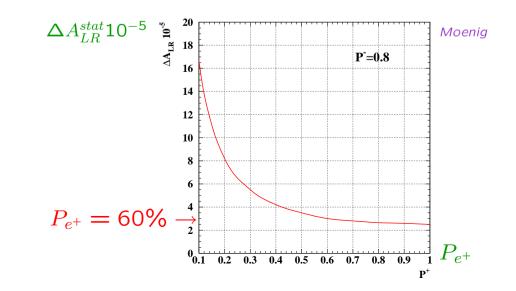
Gain in statistical power of 'Z-factory' only if $\Delta A_{LR}(pol) < \Delta A_{LR}(stat)!$ $\Rightarrow \Delta P_{eff} \sim 10^{-4}$ needed! ... not possible with only polarimetry.....

- Blondel Scheme: $A_{LR} = \sqrt{\frac{(\sigma^{RR} + \sigma^{RL} \sigma^{LR} \sigma^{LL})(-\sigma^{RR} + \sigma^{RL} \sigma^{LR} + \sigma^{LL})}{(\sigma^{RR} + \sigma^{RL} + \sigma^{LR} + \sigma^{LL})(-\sigma^{RR} + \sigma^{RL} + \sigma^{LR} \sigma^{LL})}}$
- $\Rightarrow \Delta A_{LR} \sim 10^{-4}$ $\Delta \sin^2 \theta_{eff}^{\ell} = 0.000013$

For comparison:

At LEP/Tev./LHC: $\Delta \sin^2 \theta_{eff}^{\ell} = 0.00017$

 $\Rightarrow O$ of magnitude better!



Use of polarised beams e.g. for Susy searches and model tests

E.g. test of the SUSY assumption:

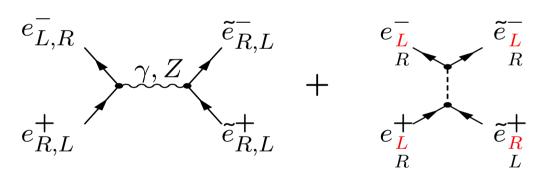
SM \leftrightarrow SUSY have same quantum numbers!

 $\Rightarrow e_{L,R}^{-} \leftrightarrow \tilde{e}_{L,R}^{-}$ and $e_{L,R}^{+} \leftrightarrow \tilde{e}_{R,L}^{+}$

Scalar partners ↔ chiral quantum numbers!

How to test this association?

Strategy: $\sigma(e^+e^- \rightarrow \tilde{e}^+_{L,R}\tilde{e}^-_{L,R})$ with polarized beams



 \Rightarrow t-channel: unique relation between chiral fermion \longleftrightarrow scalar partner

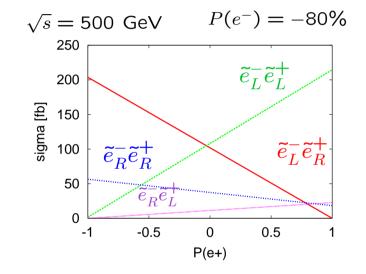
$$\begin{array}{rcl} & \rightarrow & \text{t-channel: } \tilde{e}_R^+ \tilde{e}_L^- & \longrightarrow & \tilde{e}_R^+ & \leftrightarrow & \tilde{e}_L^- \\ & & & \\ & & \rightarrow & \text{no s-channel} \end{array}$$

Physics Case for $P(e^+)$: Tests of Susy cont.

precise analysis of non-standard couplings

Polarised cross sections: $\sigma(e^+e^- \rightarrow \tilde{e}^+_{L,R}\tilde{e}^-_{L,R})$

Tricky case: $m_{\tilde{e}_L} m_{\tilde{e}_R}$ close together: $m_{\tilde{e}_L} = 200 \text{ GeV}, m_{\tilde{e}_R} = 190 \text{ GeV}$ \rightarrow same decay kinematics!



Moortgat-Pick

In our example:

 $P(e^{-}) = -80\%$ but $P(e^{+}) = 0$: no separation!

 $P(e^{-}) = -80\%$ and $P(e^{+}) = -40\%$: ratio 163 fb/66 fb!

 \Rightarrow Separation of $\tilde{e}_L^- \tilde{e}_L^+$ and $\tilde{e}_L^- \tilde{e}_R^+$ not possible with only $P(e^-)!$

Physics Case for Polarised Positrons at a LC

• option of using transversely polarised beams!

Ratesare given by:

 $\sigma = (1 - P_{e^+} P_{e^-}) \sigma_{unp} + (P_{e^-}^L - P_{e^+}^L) \sigma_{pol}^L + P_{e^-}^T P_{e^+}^T \sigma_{pol}^T$

 \Rightarrow only possible with both beam polarised!

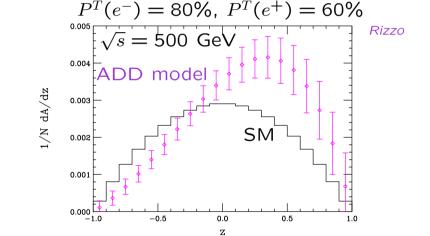
Example here: $e^+e^- \rightarrow f\bar{f}$

Observable: azimuthal asymmetry

exact symmetric in the SM!

However: if e.g. large extra dimensions

- \rightarrow Graviton Spin=2 ('tensor') exchange
- → asymmetric behaviour!!!!
- ⇒ clear separation of different models of NP



(\rightarrow see also e.g. TESLA TDR, JLC Roadmap, Snowmass '01 Resource Book, Moortgat-Pick '03, etc.)

 \Rightarrow Polarised e^+ in addition to polarised e^- needed at a LC

Further examples: Tranverse beams and their impact on ...

- the process $e^+e^- \rightarrow W^+W^-$:
 - \Rightarrow azimuthal asymmetry projects out $W_L^+ W_L^-$

at high energy asymmetry peaks a 'large' polar angles (not in beam direction!)

- ⇒ sensitive to effects of the origin of electroweak symmetry breaking without complicated final spin state analysis!
- the construction of CP violating oservables:

 \Rightarrow matrix elements $|M|^2 \sim C \times \Delta(\alpha) \Delta^*(\beta) \times S(C = \text{coupl.}, \Delta = \text{prop.}, S = \text{momenta})$

if CP violation: contributions of $Im(\mathcal{C}) \times Im(\mathcal{S})$ (e.g. contributions of ϵ tensors!) \Rightarrow azimuthal dependence ('not only in scattering plane') \Rightarrow observables are e.g. asymmetries of CP-odd quantities: $\vec{p}_a(\vec{p}_b \times \vec{p}_c)$ Remember: $\vec{s}^{2\mu} := \vec{p}_1 \times \vec{p}_3$ perpendicular scattering plane, CP even $\vec{s}^{1\mu} := \vec{p}_1 \times \vec{s}^2(p_1)$ transverse in plane, CP odd

 \Rightarrow Combination of transverse beam polarisation provide CP odd observables!

Some technical details for polarising e^- and e^+ at a LC

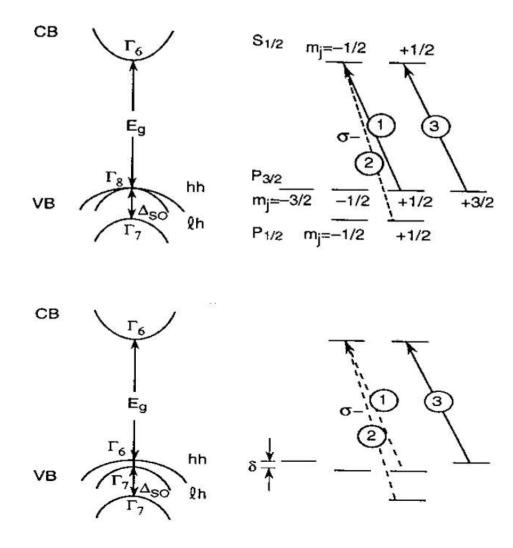
Remember again: First polarised e^- beam at a LC at SLAC (1992-98) with $P(e^-) = [60\%, 78\%]$

How did they polarise the e^- ? \rightarrow circ. polarised light ($I_z = +1$ or -1) on GaAs cathode

$$\Rightarrow P^{-1} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} = \frac{3 - 1}{3 + 1} = +0.5$$

How to get higher polarisation?

→ use strained lattice: grow GaAs on substrate with diff. crystal spacing ⇒ removes degeneracy in lower level If $h\nu = [E_g, (E_g + \delta)]$: → in principle $P^{-1} = 100\%$ possible... ⇒ $P^{-1} = 80 - 90\%$ expected at LC

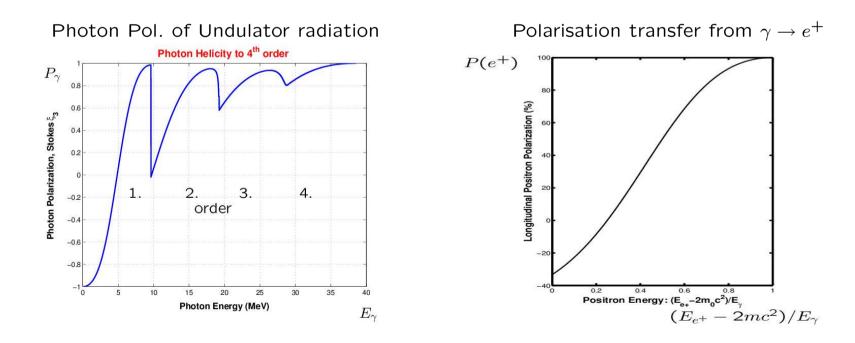


How to polarise the e^+ beam at a Linear Collider?

Complete novelty!!!

Principle (now quasi same design for all LC designs!)

 high energy beam (150-250 GeV) through helical undulator (~ 100 m) (TESLA baseline uses planar undulator anyway for production of unpol. e⁺)
 → circ. pol. photons with ~ 20 MeV (TESLA) or ~ 10 MeV (NLC)
 → pol. γ on target (Ti): conversion to pol. e⁺ (and e⁻)



'Exciting' R&D in the Polarisation Business in the next years

Demonstration experiment needed for $P(e^+)$: 'proof of principle'

- 1. Approval (in June 2003!) of the international project E166@SLAC:
 - E-166 uses the 50 GeV, low emittance FFTB@SLAC in conjunction with a 1 m-long, 2.4 mm period helical undulator (K = 0.17) to make polarised photons with 0-10 MeV
 - These photons are converted in a \sim 0.5 rad. length thick target into polarised positrons
 - The polarisation of the positrons and photons will be measured
 - Performance expectations are for positron polarisation of about 60%
- 2. Superconducting helical undulator for the TESLA scheme
 - ASTeC@Daresbury: construction of a prototype for a \sim 30 cm s.c. helical undulator with 14 mm period, 4 mm aperture, K=1 \rightarrow could be tested at TTF2 in 2004

Summary of the Polarisation Lecture

Beam polarisation of e^- and e^+ is an important tool at a LC!

- Theo. tools: use helicity spinors $u(p, \lambda)$, $v(p, \lambda)$ and orthogonal of spinvectors $(s^a p) = 0$
- Pheno. results: Focussing out the signals , background suppression, analysis of chiral coupling structure , gain in statistics
- $P(e^+)$ needed: Electroweak precision tests with unprecedented accuracy!
- $P(e^+)$ needed: Discovery and 'unveiling' of SUSY and any NP
- $P(e^+)$ needed: additional gain in statistics, better accuracy in determining P_{eff}
- $P(e^+)$ needed: exploring transversely polarised beams ($W_L W_L$, CP, ...)
- Techn. Realis. of a high $P(e^-)$ seems to be straight forward
- Techn. Realis. of $P(e^+)$ seems to work, but still an exciting challenge!

Further news and information, please have a look: POWER working group: close contact between Th/Exp/Machine $(\rightarrow http://www.ippp.dur.ac.uk/~gudrid/power)$