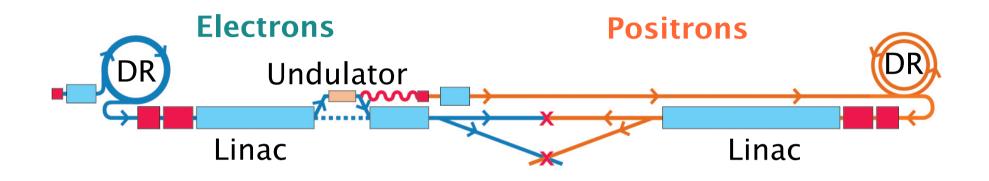
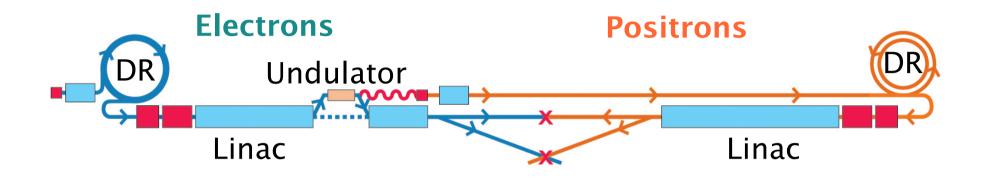

ILC Global Operations & Availability


Sebastian Schätzel (DESY)

Frühjahrstagung des Fachverbandes Teilchenphysik der Deutschen Physikalischen Gesellschaft Dortmund, 29. März 2006

- Assessment of ILC availability: Monte Carlo simulation
- How the global design is driven by availability considerations
- Benchmarking of the simulation

ILC Baseline Layout



- E_{CMS}=500 GeV
- 2 collision points (2mrad, 20mrad crossing angle)
- 2 linac tunnels (main+service)
- e⁺ from conversion of undulator photons, +auxiliary e⁺ source
- damping rings: 6.6km, 2 stacked rings for e⁺ (electron cloud)

Baseline configuration document (BCD):

http://www.linearcollider.org/wiki/doku.php?id=bcd:bcd_home

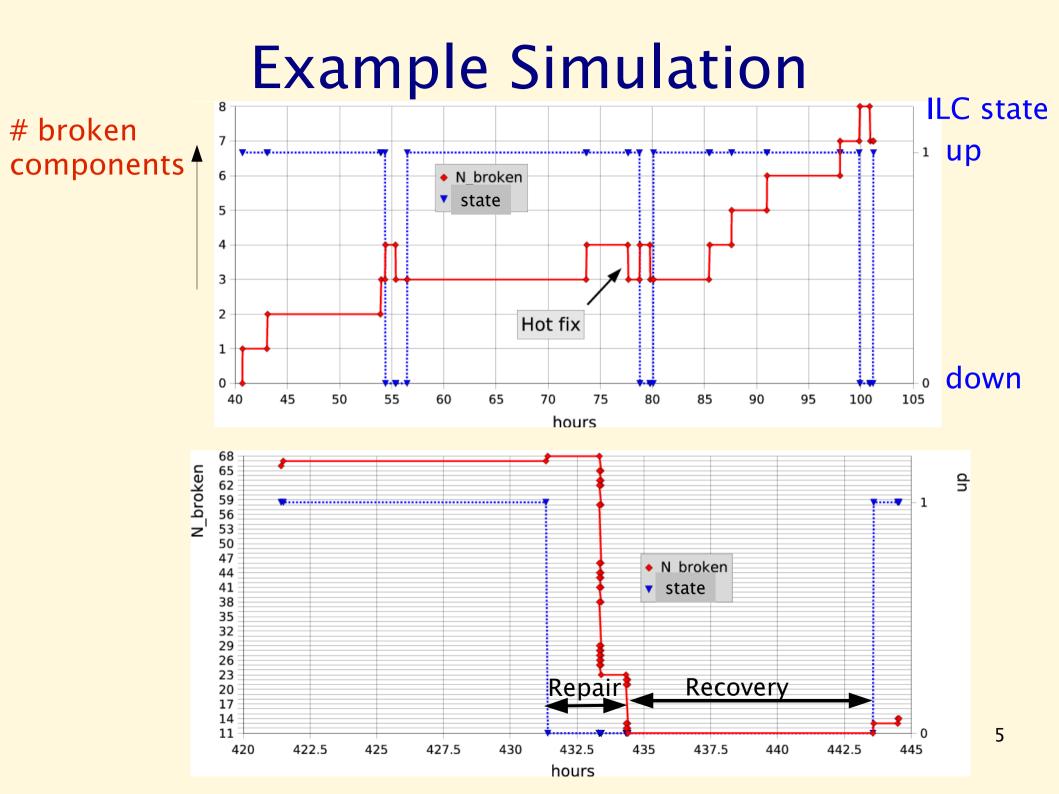
ILC Baseline Layout

What is the uptime of this machine?

Monte Carlo Simulation (Tom Himel, SLAC)

calculates ILC uptime from component failures http://www-project.slac.stanford.edu/ilc/acceldev/ops/avail/default.htm

Detailed component list:


magnets, power supplies, vacuum pumps, etc.

Stochastic approach: generate component failures every component has a mean-time-between-failures (MTBF) and mean-time-to-repair

Failures degrade ILC performance:

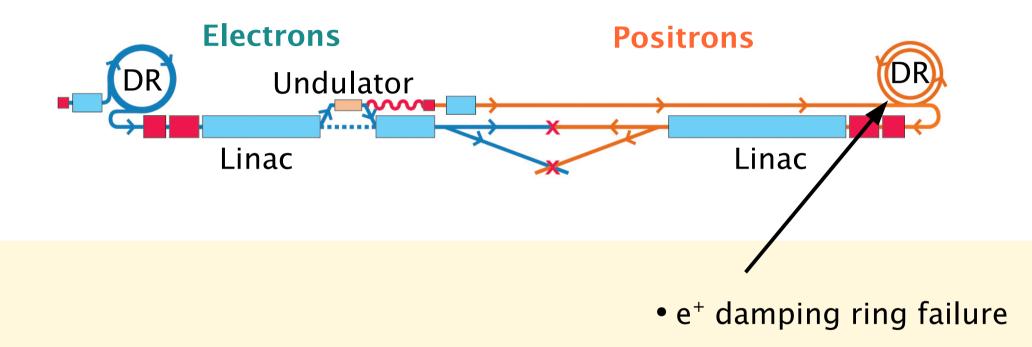
examples:	failure	ILC performance	
	klystron	reduced linac energy	
	quadrupole magnet in linac	reduced luminosity	
	quadrupole magnet in DR	broken ILC	

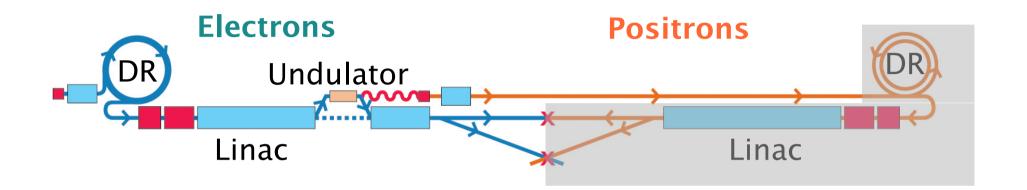
machine "down" if: luminosity \mathcal{L} <0.5 $\mathcal{L}_{nominal}$ or E_{CMS} <500 GeV (or DR HV requirements not met)

Repair & Recovery

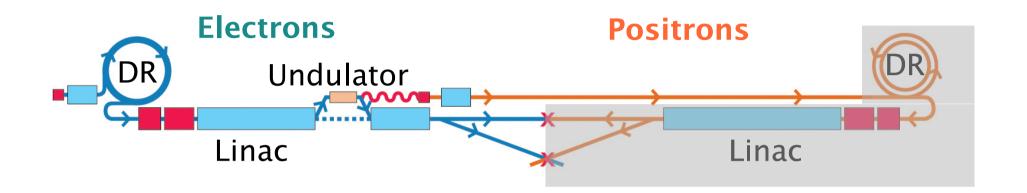
Different repair scenarios (component dependent):

- "hot repairs" (during ILC running), main linac tunnel access needed, no access needed
- example: a service tunnel reduces accesses

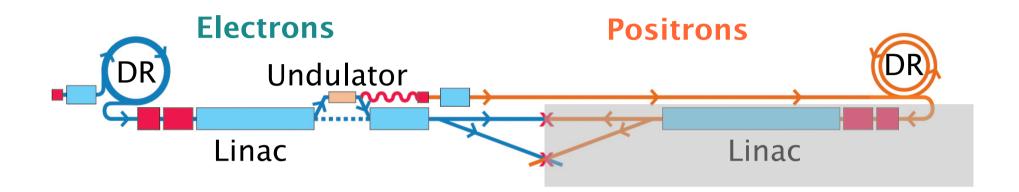

Recovery of beam ("tune time"):


- time to recover well-tuned beam in a section is proportional to the time this section was **without beam** (typically 10%)
- example: e⁻ damping ring failure if e^+ created independently of $e^- \rightarrow$ can keep e^+ beam \rightarrow faster ILC recovery

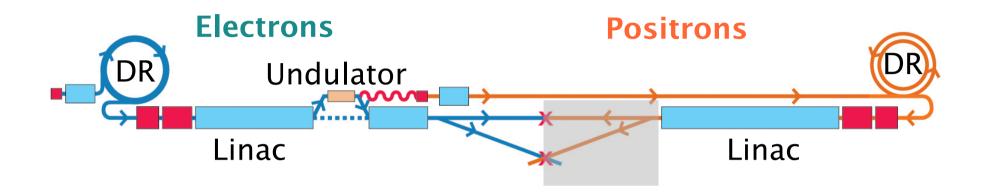
global ILC layout


Machine development:

every ILC section needs 1% (damping rings: 2%) of total simulation time for improvement studies 6

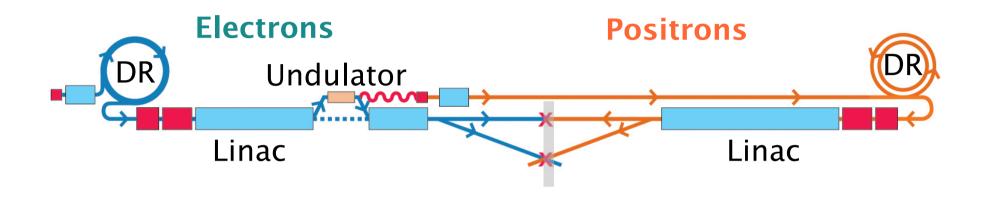


- e⁺ damping ring failure
- e⁺ side down

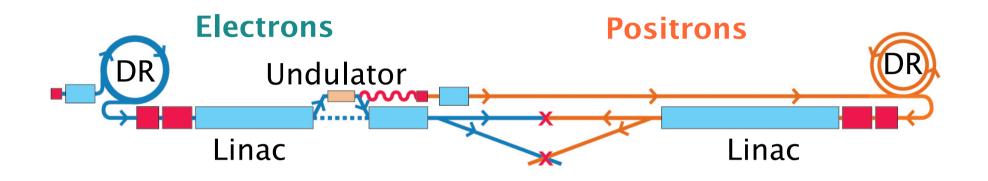

can still run e⁻ side
maintain stable running
machine studies

- e⁺ damping ring failure
- e⁺ side down

can still run e⁻ side
maintain stable running
machine studies


 e⁺ damping ring repaired and tuned

can still run e⁻ side
maintain stable running
machine studies


 e⁺ damping ring repaired and tuned

• e⁺ main linac tuned

can still run e⁻ side • maintain stable running • machine studies

- e⁺ damping ring repaired and tuned
- e⁺ main linac tuned
- e⁺ beam delivery system tuned

can still run e⁻ side
maintain stable running
machine studies

- e⁺ damping ring repaired and tuned
- e⁺ main linac tuned
- e⁺ beam delivery system tuned
- IP region tuned

ILC back up and running

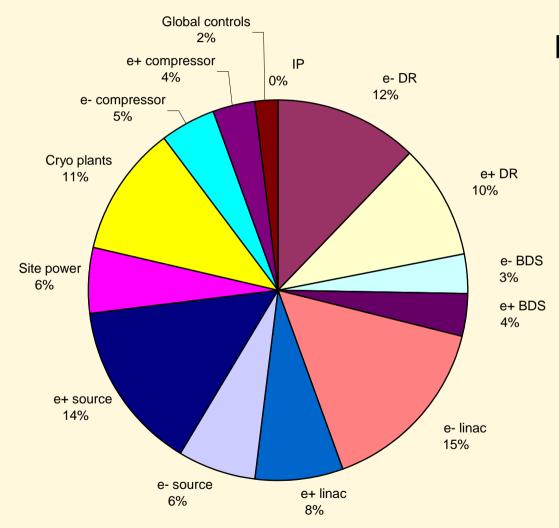
Simulation Output

- total ILC downtime
- downtime per component
- downtime per accelerator section

Optimise:

- make components more reliable
- add spare components (redundancy)
- change global layout

Goal: ILC should deliver luminosity ~85% of the time


How 85% uptime is achieved

- 3% energy overhead in main linac; low energy linacs: 5%
 (5 GeV damping ring injector, e⁺ accelerator to 250 MeV, ...)
- 1 hot-swappable spare klystron/modulator per low energy linac
- klystrons and electronics in service tunnel can be hot-swapped, (not so in main linac tunnel)
- dumps and shielding in accelerator sections: people can work with beam in upstream section
- many more details (see BCD)

Critical Components

	Improvement factor A that gives 17% downtime for 2 tunnel undulator e+	to these devices for 2 tunnel undulator e+ source with	Improvement factor B for 1 tunnel undulator e+ source, 6%	Improvement factor C for 1 tunnel undulator e+ source, 3%	Nominal MTBF
Device	source	strong keep_alive	energy overhead	energy overhead	(hours)
magnets - water cooled	20	0.4	20	20	1,000,000
power supply controllers	10	0.6	50	50	100,000
flow switches	10	0.5	10	10	250,000
water instrumention near pump	10	0.2	10	30	30,000
power supplies	5	0.2	5	5	200,000
kicker pulser	5	0.3	5	5	100,000
coupler interlock sensors	5	0.2	5	5	1,000,000
collimators and beam stoppers	5	0.3	5	5	100,000
all electronics modules	3	1.0	10	10	100,000
AC breakers < 500 kW		0.8	10	10	360,000
vacuum valve controllers		1.1	5	5	190,000
regional MPS system		1.1	5	5	5,000
power supply - corrector		0.9	3	3	400,000
vacuum valves		0.8	3	3	1,000,000
water pumps		0.4	3	3	120,000
modulator		0.4		3	50,000
klystron - linac		0.8		5	40,000
coupler interlock electronics		0.4		5	1,000,000
vacuum pumps		0.9			10,000,000
controls backbone		0.8			380,000
additional linac energy overhead			3%		3%

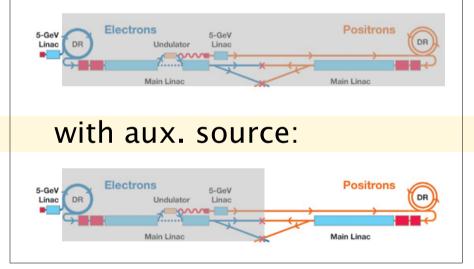
Downtime per ILC section

large contributions (>10%) from

- e⁺ source (transport line)
- e⁻ linac (split by undulator)
- damping rings
- cryo plant

Auxiliary e⁺ Source

positron source	ILC uptime		
undulator	69%		
undulator+auxiliary	78%		
conventional	80%		


undulator w/o aux. source leads to reduced uptime because of e⁺/e⁻ arm coupling (recovery and machine development)

auxiliary positron source:

- stand-by conventional source of low intensity (~10%)
- 2h switch-over time
- required intensity driven by sensitivity of Beam Position Monitors

Example:

e⁻ damping ring failure: without aux. source:

Service Tunnel

for high availability need access to RF, modulators, power supplies, and electronics while linac is running

Tunnel configuration	Simulated % time integrating luminosity under normal running conditions	Simulated % time integrating luminosity when commissioning*	
a single tunnel without robotic repair	64%	25%	
a single tunnel with robotic repair	73%	Not simulated	
two tunnels where the support tunnel is always accessible	78%	46%	
two tunnels where the support tunnel is only accessible when the RF is turned off	72%	Not simulated	*MTBFs halved, required machine development time doubled

Service Tunnel

pros:

- significant increase in uptime, especially for commissioning
- (some) electronics do not have to be radiation-hard
- higher availability \rightarrow shorter ILC running (save on running cost)

cons:

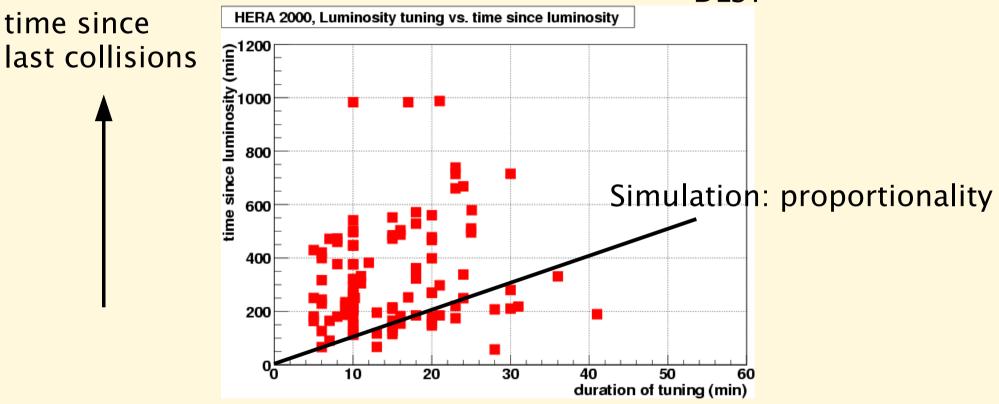
- expensive to build: increases total ILC construction cost by a few % $O(\in 100M)$
- improved uptime can be achieved for 1 tunnel by additional redundancy
- service tunnel radiation-safe? (radiation leaking in from main tunnel through connecting tunnels?)
- Baseline: 2 tunnels (but still a debated subject)
 - decision might in the end depend on site location:
 - local construction cost (tunnel depth)
 - local safety regulations

Benchmarking

- simulation has built-in philosophies (e.g., recovery algorithm) based on SLAC experience
- no SLC operation data for comparison available (detailed log book)

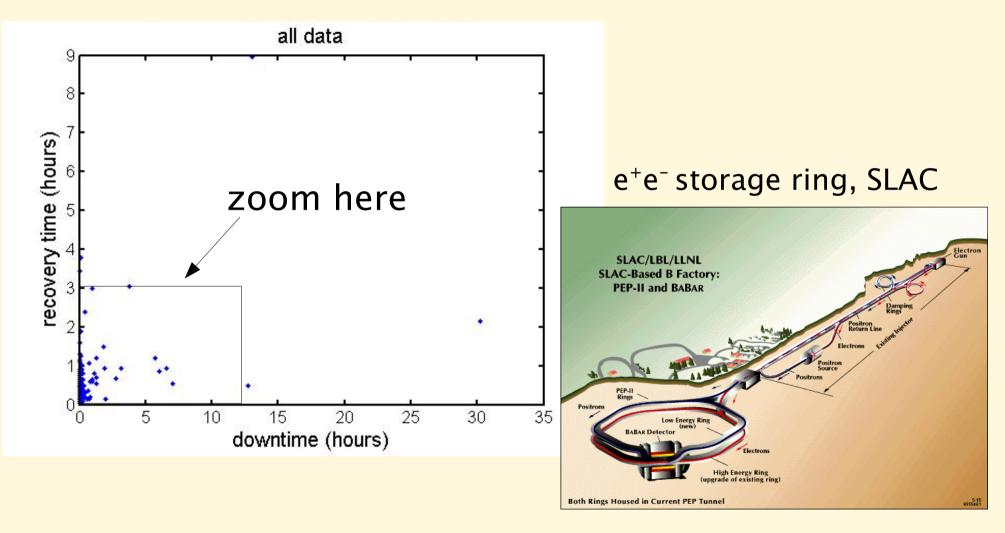
Is the simulation close to reality?

→ 2 comparisons: HERA and PEP-II

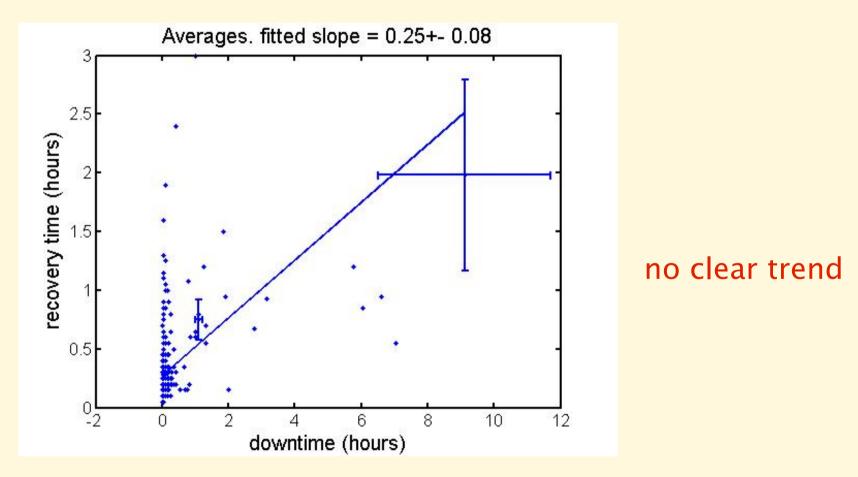

focusing on:

assumption that recovery time proportional to time without beam

The largest contribution is from tuning of the IP region (=luminosity tuning) because both beams are needed.


HERA Comparison

ep storage ring, DESY



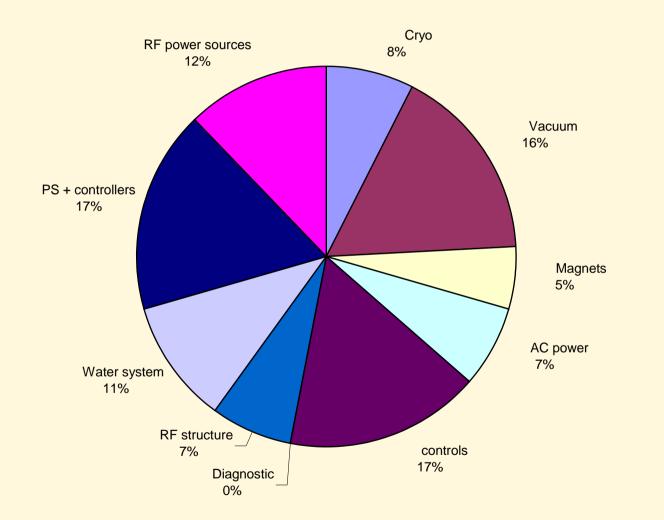
HERA: No correlation

PEP-II Comparison (J Nelson, SLAC)

PEP-II Comparison (J Nelson, SLAC)

Benchmarking Results

- no justification of tune-time proportionality from benchmarking
- simulation with fixed average tune-time is different: Example: positron source comparison


	Description	time integrating lum (%)	time scheduled MD (%)	
proportional	conventional	81.8	4.4	
tune-time	undulator	68.1	12.0	
fixed	conv. fixed tune-time	82.5	5.3	
tune-time	undulator fixed tune-time	74.1	12.4	

remaining difference due to machine development

Summary & Conclusions

- For the first time an accelerator is constructed with quantitative global availability assessment.
- Availability considerations have big (costly) impact on global ILC layout:
 - 2 tunnels favoured.
- Key components have to be made more reliable.
- Simulation must be improved, e.g., benchmarking suggestive of different recovery algorithm.

Downtime per ILC system

