Benchmarking of Availability Simulation

Sebastian Schätzel, DESY

Grömitz, 1 December 2005

Availsim

- simulates integrated luminosity/downtime of linear collider (after commissioning phase)
- by Tom Himel for US LC Technology Options Study
- quantitative comparison of different designs

Availsim

- simulates integrated luminosity/downtime of linear collider (after commissioning phase)
- by Tom Himel for US LC Technology Options Study
- quantitative comparison of different designs

S Schätzel

Questions about Availsim

- Can we believe the absolute downtime?
- Can we believe comparisons?
 (E.g., conventional e⁺ source vs. undulator)
- Can Availsim make recommendations for ILC design?

Availsim Mapping

HERA 2000

- stable machine (8 years of running)
- control & monitoring system
- systematic logging of failures

	Montag, 22. Mai 2000		
5/23/2004 4:00	p-Inj	1:51	p-Inj
5/23/2004 5:51	e-Inj	0:41	e-Inj
5/23/2004 6:32	Lumi tuning	0:10	Lumituning
5/23/2004 6:42	Lumi run	10:14	Lumirun
5/23/2004 16:56	e+ run fuer Hermes	2:00	Ехр
5/23/2004 18:56	ZZ für Zeus LPS	1:44	Warten
5/23/2004 20:40	p-Inj	0:20	p-Inj
5/23/2004 21:00	QP65 Ausfall waerend Massage	0:30	Ausfall
5/23/2004 21:30	p-Inj (52/208 MHz phasing)	2:33	p-Inj

Luminosity Tuning

 assumed: proportionality to time since last luminosity

Luminosity Tuning

Impact on Availability

Example: ILC e⁺ production designs:

Undulator:

• use of high energy e⁻

Conventional: • additional e⁻ source

Impact on Availability

Example: ILC e⁺ production designs:

Undulator:

- use of high energy e⁻
- e⁺ not available before e⁻

Conventional:

- additional e⁻ source
- e⁺ available without e⁻

Impact on Availability

Example: ILC e⁺ production designs:

Undulator:

- use of high energy e⁻
- e⁺ not available before e⁻
 - long recovery

Conventional:

- additional e⁻ source
- e⁺ available without e⁻

Tune-time in e⁺ LINAC

Tune-time per ILC region

average tune	electro	on arm	positron arm		
time (hours) conv. undulator		conv.	undulator		
Source	0.05	0.05	0.06	0.19	
DR	0.18	0.20	0.21	0.47	
Compressor	0.12	0.13	0.13	0.29	
LINAC	0.15	0.16	0.16	0.32	
BDS	0.17	0.18	0.18	0.36	
IP	dto.	dto.	0.54	0.81	

- similar in e⁻ arm
- factor \approx 2 larger in e⁺ arm for undulator

New Simulation

 use fixed tune-time: average value from e⁻ arm

Results

		time					
	time down	integrating	time	time	time actual	time	
	incl forced	lum or sched	integrating	scheduled	opportunistic	useless	accesses
Description	MD (%)	MD (%)	lum (%)	MD (%)	MD (%)	down (%)	per month
conventional	13.8	86.2	81.8	4.4	2.7	11.2	2.9
undulator	19.9	80.1	68.1	12.0	2.5	17.4	3.0
conv. fixed tune-time	12.1	87.9	82.5	5.3	1.7	10.5	3.0
undulator fixed tune-time	13.4	86.6	74.1	12.4	2.1	11.4	3.2

uptime nearly the same

Results

		time					
	time down	integrating	time	time	time actual	time	
	incl forced	lum or sched	integrating	scheduled	opportunistic	useless	accesses
Description	MD (%)	MD (%)	lum (%)	MD (%)	MD (%)	down (%)	per month
conventional	13.8	86.2	81.8	4.4	2.7	11.2	2.9
undulator	19.9	80.1	68.1	12.0	2.5	17.4	3.0
conv. fixed tune-time	12.1	87.9	82.5	5.3	1.7	10.5	3.0
undulator fixed tune-time	13.4	86.6	74.1	12.4	2.1	11.4	3.2

but: MD takes longer for undulator (no simultaneous MD in e⁺ and e⁻ arms)

Results

		time					
	time down	integrating	time	time	time actual	time	
	incl forced	lum or sched	integrating	scheduled	opportunistic	useless	accesses
Description	MD (%)	MD (%)	lum (%)	MD (%)	MD (%)	down (%)	per month
conventional	13.8	86.2	81.8	4.4	2.7	11.2	2.9
undulator	19.9	80.1	68.1	12.0	2.5	17.4	3.0
conv. fixed tune-time	12.1	87.9	82.5	5.3	1.7	10.5	3.0
undulator fixed tune-time	13.4	86.6	74.1	12.4	2.1	11.4	3.2

Machine Development causes 10% luminosity loss for undulator

Conclusions

- basic assumptions of availability simulation have to be critically analysed
 - strong impact on results (e.g., source comparison)
- analysis of HERA MD experience needed

Backup Slides

HERA Luminosity Tuning

Undulator e⁺ Source

- electron LINAC needed for positrons
- time without beam larger for e⁺ regions

Conventional e⁺ Source

independent of electron beam-line

S Schätzel

Opportunistic MD

 2 hours reasonable?