
Benchmarking Availability Code with HERA

Eckhard Elsen, Michiko Minty, Sebastian Schätzel (DESY)

Stochastic Approach

- simulate availability (⇔integrated luminosity) of collider after commissioning
- developed by Tom Himel within the scope of the US LC Technology Options Study
- quantitative, objective comparison of different designs to assist in decision making

Example

16 August 2005 S Schätzel 3

Why Benchmarking?

- model ⇔ reality
- wrong model might introduce bias towards one of the designs

Simulation

- component list with MTBFs (mean time between failures)
- calculation of failure frequency
- failure management & recovery

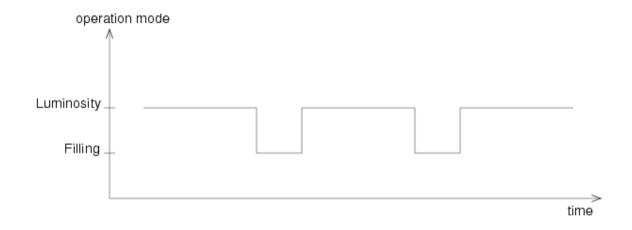
HERA in 2000

- mature machine (8 years of running experience)
- 100 pb⁻¹ delivered luminosity
- sophisticated control & monitoring system in place
- systematic logging of failures

HERA MTBFs

- determined from operator log book failure entries and HERA component list
- comparison with ILC simulation is ongoing

Calculation of Failure Frequency


failures

program generates
correct # failures
from MTBFs

n failal 65			
Region	HERA	simulated	
PIA	1	1.2 ± 0.2	
DESY 2	3	4.3 ± 0.4	
DESY 3	2	1.8 ± 0.3	
LINAC 2	6	6.1 ± 0.5	
LINAC 3	7	7.1 ± 0.5	
PETRA	34	33.8 ± 1.1	
H1	13	13.4 ± 0.7	
ZEUS	28	27.7 ± 1.0	
HERA-B	11	11.9 ± 0.7	
HERMES	11	10.7 ± 0.6	

New operational aspect

• HERA as a storage ring requires refilling phase

• implementation of storage ring mode in progress

Failures in Storage Ring

Operation mode	Failure	Consequence of failure
luminosity	storage ring	filling
	pre- accelerators	hot repair or delayed filling
filling	storage ring	filling
	pre- accelerators	filling

Failure Management & Recovery

will compare with HERA:

integrated luminosity, failures of components, time spent doing repairs, time and frequency of luminosity running and filling, time spent doing luminosity tuning, total downtime, downtime caused by pre-accelerators

Summary

- MTBFs
 - in progress
- calculation of failure frequency ✓
- failure management & recovery
 - requires implementation of accelerator phases (pre-accelerators, magnet massage) in addition to luminosity production

Conclusions

- an important tool to address operational aspects of accelerators
- benchmarking is under way with promising intermediate results
- further benchmarking input from other sites?