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Cf. also  Alexander Westphal‘s talk



Apparently 
point-like particle

·

“String”

closed open

or

=
Basic idea:

Different point 
particle species

Different string
vibration modes

Particle type A Particle type B Particle type C
etc.

String theory is a unified UV-completion of SM 
interactions and GR
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C
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A
A

gravity,
Yang-Mills,
Yukawa etc.

∋

Interactions:

→ Unified, UV-finite description of all particles and 
     interactions
    

at large length scales
(small energies)



So far: No deviations from point particle behavior 
in particle physics experiments  

·

∆LLHC

string size < 10−19m ∼ (1 TeV)−1

Consistent 
with

Hence:

→ Strings must be tiny and
     directly only affect physics 
     in the deep UV



But:  There are also indirect consequences of string 
theory that may even be relevant for observations at 
cosmological length scales!
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This talk

Implementing a positive cosmological constant  (“dark 
energy”) in string theory is surprisingly non-trivial!

But:  There are also indirect consequences of string 
theory that may even be relevant for observations at 
cosmological length scales!



Why is that?



Mathematical consistency of string theory requires 
extra dimensions (and supersymmetry)

Superstrings:       9 spatial + 1 temporal dimensions

Observation:       3 spatial + 1 temporal dimensions

→ Standard scenario:  “Compactification”

small &
compact

M(10) = M(4) × M(6)

(Size R  )c
Large & non-compact
( = our familiar 4D world)

 At length scales ΔL >> R  the world looks effectively 4Dc



High resolution

Low resolution

M(6)

M(4)

M(4)



An important consequence of the extra dimensions:

Moduli fields



Moduli fields:

Light 4D scalar fields from higher dimensional field 
components: 

E.g. metric fluctuations:

δgMN → δgµν , δgµm , δgmn

4D Metric
4D Vector fields

4D Scalars

Heavy Light Moduli

Integrate out

μ,ν = 0,1,2,3
m,n = 4,...,9

M,N= 0,...,9



Various effects (tree-level + quantum corrections) 
generate an effective 4D scalar potential for the moduli

φ1

φ2

V(φ)

φ*

Ideally:     V(φ*) = ρ    ≈ (1 meV)4
vac Mmoduli > O(30TeV)

Positive CC      Local minimum at V(φ*) > 0



Various effects (tree-level + quantum corrections) 
generate an effective 4D scalar potential for the moduli

φ1

φ2

V(φ)

φ*

Ideally:     V(φ*) = ρ    ≈ (1 meV)4
vac Mmoduli > O(30TeV)

Positive CC      Local minimum at V(φ*) > 0

Main topic of this talk
(surprisingly difficult!)



Two problems:

1.  Find a critical point with  V(φ*) > 0

Problem:  Simple setups ruled out by no-go theorems

Too steep slope in v 
whenever  V>0

v (volume modulus)

V(v)

   E.g.:  Gibbons (1984);  
           de Wit, Smit, Hari Dass (1987)
           Maldacena, Nuñez (2000)
           Steinhardt, Wesley (2008)

(Schematically)
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Two problems:

1.  Find a critical point with  V(φ*) > 0

Problem:  Simple setups ruled out by no-go theorems

→ Need more complicated compactification setups:

1.  “Classical de Sitter vacua”
(Tree-level with orientifolds planes and negative 6D curvature)

2.  “Quantum de Sitter vacua”  
(Perturbative and non-perturbative quantum corrections relevant)

To evade no-go

To evade no-go

or



Two problems:

2. Make sure critical point is really a local minimum!

Problem:  For many scalar fields, saddle points are
               much more likely!

Tachyonic instabilities generic!→

(No protection from SUSY in de Sitter)



More precisely:  ∃ two types of tachyons:

1. “Statistical” tachyons
In a random potential with many scalars, the fraction of 
tachyon-free critical points is exponentially small

• Naively:

P(no tachyons) ∼ 2−Nscalars

• More sophisticated estimates 
(in “random supergravity”):

Marsh, McAllister, Wrase (2011)
Chen, Shiu, Sumitomo, Tye (2011)

Sumitomo, Tye (2012)

P(no tachyon) ∼ exp[−cN1.3...1.5
scalars ]
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More precisely:  ∃ two types of tachyons:

1. “Statistical” tachyons
In a random potential with many scalars, the fraction of 
tachyon-free critical points is exponentially small

2. “Structural” tachyons

In special classes of potentials, de Sitter tachyons 
might be unavoidable, even for few scalars

→ Extensive searches might give working examples

→  Don‘t waste your time on these models!



Example:  Classical de Sitter vacua in IIA string theory



Example:  Classical de Sitter vacua in IIA string theory

•  Various known examples of de Sitter critical points
Early examples and related early work:  Caviezel, Koerber, Körs, Lüst, Wrase, MZ 

(2008)
Flauger, Paban, Robbins, Wrase (2008)

Danielsson, Haque, Koerber, Shiu, Van Riet, Wrase (2011)
                                         Silverstein (2007)

Haque, Shiu, Underwood, Van Riet (2008)
Danielsson, Haque, Shiu, Van Riet (2009)

Andriot, Goi, Minasian, Petrini (2010)
Dong, Horn, Silverstein, Torroba (2010)

Danielsson, Koerber, Van Riet  (2010)



Example:  Classical de Sitter vacua in IIA string theory

•  Various known examples of de Sitter critical points

•  All known examples have O(10) moduli and at 
   least one tachyon

•  All known examples are close to Minkowski vacua in
   parameter space (SUSY or no-scale)

See e.g.  Danielsson, Dibitetto (2012)
Junghans (2016)

→  Are the observed tachyons statistical or structural?

I.e. is it worth searching for further examples?



This is part of the motivation for our work:

We investigate de Sitter vacua close to no-scale 
Minkowski vacua in 4D, N=1 supergravity

→Are there structural tachyons, and if yes, 
    under which conditions?

Are these conditions met in classical de Sitter 
vacua near no-scale Minkowski vacua?

If yes:  Would identify the tachyon in at least a 
subset of the classical de Sitter vacua as structural

A possible application:



Rest of the talk

1.  No-scale potentials

2.  A structural tachyon

3.  Ways to evade the tachyon

4.  Application to classical de Sitter vacua

5.  Summary and outlook



1. No-scale potentials 



F-term potential in 4D,               supergravity

VF = eK
�
KIJ̄ DIW DJ̄W − 3|W|2

�

KIJ̄ = Inverse of

DIW = ∂IW + (∂IK)W

Kähler potential

SuperpotentialW = W(φI)

N = 1

KIJ̄ = ∂I∂J̄K ≡ ∂
∂φI

∂

∂φJ
K

K = K
�
φI,φI

�



F-term potential of no-scale type:

φm

φa

VF = eK



Kab̄ DaW Db̄W + Kmn̄ DmW� �� �
KmW

Dn̄W� �� �
Kn̄W

−3|W|2





= eK
�
Kab̄ DaW Db̄W

�
≥ 0

Kmn̄ KmKn̄ = 3

{φI} = {φm,φa}

K = K1

�
φm,φm

�
+ K2

�
φa,φa

�
⇔ Kmā = 0

W = W(φa) ⇔ ∂mW = 0

No-scale fields

Orthogonal fields

⇒

Ellis, Lahanas, Nanopoulos, 
Tamvakis (1984)



VF = eK
�
Kab̄ DaW Db̄W

�
≥ 0

�DaW� = 0 ∀a ⇔ �VF� = 0 & �φm�undetermined

φm

φa

VF

(no-scale fields)

(orthogonal fields)
In general (but not necessarily) stabilized

Flat directions in Minkowski vacua



No-scale potentials are attractive because:

•  Vanishing CC at arbitrary SUSY breaking scale

Λ = �VF� = 0

• A small deformation 

Vno−scale → Vno−scale + δV

M4
SUSY = �3|W|2�

might generate

0 < Λ � M4
SUSY

(= model dependent, could be anything)



• For sufficiently small uplift deformation  δV

the stabilized φa remain stabilized at positive M2



• For sufficiently small uplift deformation  δV

the stabilized φa remain stabilized at positive M2

φm

φa

VF

(no-scale fields)

(orthogonal fields)
Remain stabilized after small 
deformation if stabilized in 
Minkowski vacuum

Might become tachyonic 
after small deformation



• For sufficiently small uplift deformation  δV

the stabilized φa remain stabilized at positive M2

⇒ Only the       might become tachyonicφm

⇒ Statistically favored over completely random potentials?

(or possible unstabilized       )φa

• No-scale potentials form basis of some interesting
  inflation models



• Semi-realistic string compactifications often lead to
  no-scale potentials at leading order



• Semi-realistic string compactifications often lead to
  no-scale potentials at leading order

E.g. IIB on Calabi-Yau orientifold with 3-form fluxes

φa

φm

↔ Complex structure moduli and dilaton

↔ Kähler moduli
(stabilized classically by fluxes)

(stabilized by quantum corrections ↔       )δV



• Known classical de Sitter solutions occur near
  Minkowski solutions in parameter space

(SUSY or no-scale)

Our work might help to understand the tachyons 
in these models



2. A structural tachyon 



Our main theorem:

Consider K(φm,φm,φa,φa), W(φm,φa; )λ such that

K = − ln[(φm + φm)(φn + φn)(φl + φl)dmnl] + K2(φa + φa)

⇒ Kmn̄ KmKn̄ = 3

limλ→0 W(φm,φa;λ) = W(φa)

with all      stabilized at φa λ = 0

(I.e. λ = 0 ↔ VF = Vno−scale)

∃ a de Sitter critical point for λ � 1 (i.e. close to the no-scale 
Minkowski vacua)

Wamn ≡ ∂a∂m∂nW = O(λ2)



Then there always exist functions
such that the complex field 

contains a tachyon at the dS vacuum  

Ya(φm,φb)

Note: Ψ is in general not the sGoldstino  

S := DIW
W ΦI = Kmφm +

∂mW

W� �� �
O(λ)

φm +
DaW

W� �� �
O(λ)

φa

It only aligns with it in the no-scale Minkowski limit:

Ψ|λ=0 = Kmφm = S|λ=0

ψ = Kmφm + λYa(φm,φb)φa



In fact, one can easily construct dS examples where

• Ψ is tachyonic

• S is stable

E.g. Junghans (2016)



In fact, one can easily construct dS examples where

• Ψ is tachyonic

• S is stable

Our theorem thus generalizes previous no-go 
theorems based on the sGoldstino direction

E.g. Junghans (2016)

Brustein, de Alwis (2004)
Gomez-Reino, Scrucca (2006)
Gomez-Reino, Scrucca (2007)

Covi, Gomez-reino, Gross, Louis, Palma, Scrucca (2008)



3. Ways to evade the tachyon 



Three ways to circumvent the no-go theorem 
within pure F-term models:

(i) Subleading corrections to the Kähler potential  K 
(E.g.        corrections in type IIB string theory)        α�3

(ii) Non-zero        Wamn = O(λ1)

(iii)  At least one unstabilized       at no-scale 
      Minkowski vacuum

φa

Becker, Becker, Haack, Louis (2002)

• Non-generic ⇒ Requires extra tuning freedom 
• Yields extra statistical tachyon candidates 

Recent discussion e.g.  Achucarro, Ortiz, Sousa (2015)

Tricky
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Application to classical de Sitter vacua in IIA string theory:
Which of the three caveats are available?

(i) Subleading corrections to K are by assumption
    negligible in classical de Sitter vacua

(ii)   Wamn = O(λ1) only possible with non-geometric 

fluxes or instanton corrections

(iii) Difficult to satisfy all constraints. 
Does not work in STU-models
(Could not yet close all loop holes for general case)

(i.e. not in classical dS vacua)

X
X
?



At least one of the observed tachyons in classical 
IIA de Sitter solutions near no-scale Minkowski 
vacua might really be a structural tachyon.



5. Summary and outlook  



Investigated de Sitter vacua near (a class of)
no-scale Minkowski vacua

→ Have a tachyonic instability unless

- Subleading corrections to the Kähler potential 
  are relevant and fulfill certain requirements

- Wamn = O(λ1)

-  At least one φa is unstabilized at the no-scale
Minkowski vacuum

- More general potentials are assumed



Apart from a possible loop hole in the third 
(non-generic) case, none of these caveats are 
available for classical de Sitter vacua

The observed tachyons in classical de Sitter vacua 
may have structural rather than statistical reasons 

(More work needed)



Apply to phenomenologically interesting no-scale models 
(including inflation models)

Close loopholes for classical de Sitter vacua?

Useful also for other corners of the string landscape? 
Understand the set of meta-stable de Sitter vacua 

Further directions:

Generalize theorem to other situations (more general K, 
D-terms, nilpotent superfields, SUSY Minkowski vacua etc.)


