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@) Introduction

Why Quantum Entanglement ?

Quantum Entanglement = Measure of ‘Quantumness’

$

[ Quantumness’
= We know the total system but not its part.]
= Structures of Quantum Matter

Holography (Gauge/Gravity duality, AdS/CFT)‘
= Structures of Spacetime
in Gravity (or String theory)

e.g. Surface Area = Entanglement Entropy (EE)
Perturbative Einstein eq. = First law of EE



What is the quantum entanglement ?

Consider the following states in two spin systems:

(i) A direct product state (unentangled state)

w)=5 1), 414, Jelt), 14, Fwelv.)
\/Ivndependent

(ii) An entangled state (EPR pair)
1
w)=l11), @), ), /), [l elv)

v v We know the state of A+B

One determines the other ! | but not the state of A or B.




Entanglement entropy (EE)

Divide a quantum system into two parts A and B.
The total Hilbert space becomes factorized:

Htot — HA ®H . Example2: QFT

Examplel: Spin Chain A B

Hooooo& »60308 — Aﬁ&A::
Define the reduced density matrix ©, for A by

Ps=11304
Finally, the entanglement entropy (EE) S, is defined by

SA = —TI’A P4 IOgPA .| (von-Neumann entropy)




Quantum Entanglement has recently been applied also
to other topics in theoretical physics:

e Condensed Matter Theory
Entanglement Entropy (EE), Entanglement Spectrum
— Quantum Order Parameter
~ Required 'Size’ of numerical calculations

e Quantum Field Theories (QFTs)
(Renyi) Entanglement Entropy (EE)
— Universal quantities which characterize
the degrees of freedom of QFTs
—> Proof of c-theorem, F-theorem etc.
“"Geometrization of QFTs”



An example in Stat-Mech: Quantum Ising spin chain

Consider the Ising spin chain with a transverse magnetic field:

H = —Z o —/12 oo,

SA

Paramagnetism
log2 === ===

- A

oi)=0 1 for)z0

[Vidal-Latorre-Rico-Kitaev 02, Calabrese-Cardy 04]



[1] It is recently reported that (2" Renyi) EE was
measured even experimentally in a cold atom system.
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[2] Recent Experimental realization of "holographic EE’
arXiv:1705.00365

Measuring Holographic Entanglement Entropy on a Quantum Simulator
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Anti-de Sitter/conformal field theory {AdS/CFT) comespondence is one of the most promising realizations
of holographic principle towards quantum gravity, The recemt development of a discrete version of Ads/CFT
oorreenandence in terme of teneor network c motivates one 1o smulate and demonetrate A AS/ICET correenondence:




@ Quantum Entanglement and Holography

(2-1) AdS/CFT

[Maldacena 97]

AdS/CFT
Quantum Gravity (String theory) Conformal Field Theory
on d+2 dim. AdS spacetime — (CFT) on d+1 dim.
(anti de-Sitter space) Minkowski spacetime

‘ Classical limit ‘Large N Iimit_ .
Strong coupling limit

General relativity with N<O0 Strongly interacting
(Geometrical) quantum many-body systems

Basic Principle

L. .. =/
(Bulk-Boundary relation) : | _ Cravity CFT




(2-2) Holographic Entanglement Entropy (HEE)
[Ryu-TT 06; derived by Lewkowycz-Maldacena 13]

| Area(y,) e
SA — M|n (yA) CFT,,,| (Weomitthetimedirection.)
Oy a=0A 4G
yarA L N -

2

7a is the minimal area surface
B AdS

(codim.=2) such that 7

oA=0y, and A~7y, . 1 “S—

homologous z>¢ (UV cut off)
Note: In time-dependent spacetimes, 2 2 d
o, dzf—dt? ) dx
we need to take extremal surfaces. ds‘ =R*. = 1

[Hubeny-Rangamani-TT 07] VA



Holographic Proof of Strong Subadditivity [Headrick-TT 07]

A A A

B — >

C = B o B) — SAUB_I_SBUC ZSAUBUC +SB
C C

A A A>

B = B > B[ = S, g +S5 c=5,+S,

Algebraic relations in Quantum Information Theory
< Geometric properties in Gravity




(2-3) Einstein Equation from Entanglement

A is a round ball (radius ) in 3d CFT. Its center is at (t,X).
The perturbative Einstein equation is rewritten as follows:

1
Ruv B 5 Rg iy + Ag % - Tr‘”’ o
o cc Matter field
Kinetic term 1 l T l contributions

(af -0, -0, —I%) AS,(t,%,1)=(0)O)

[Nozaki-Numasawa-Prudenziati-TT 13, Bhattacharya-TT 13]

¢ 0

The perturbative Einstein eq. turns out to be equivalent
to the first law of entanglement entropy. [Lashkari-

McDermott-Raamsdonk 13, Faulkner-Guica-Hartman-Myers-Raamsdonk 13]

1st lawof EE: S(p, +Ap, || p4) =AS,—AH, =0, (p,=e"*).



(2-4) Emergent Spacetime from Quantum Entanglement

The HEE suggests the following novel interpretation:
A spacetime in gravity = Bits of quantum entanglement

_ Area(y, ) N Area(y, )
4G, L,

SA

Y A
-4
Planck length

= Manifestly realized in the recently argued connection

between AdS/CFT and Tensor networks !
[Swingle 09, cf. Raamsdonk 09, Susskind-Maldacena 13, ....]



(2-5) Tensor Networks and AdS/CFT

Tensor Network [See e.g. Cirac-Verstraete 09(review)]

Tensor network = Geometrical description of wave function
= Efficient variational ansatz for the ground state

wave functions in quantum many-body systems.

= An ansatz should respect the correct
guantum entanglement of ground state.

~Geometry of Tensor Network



MERA (Multiscale Entanglement Renormalization Ansatz):

= An efficient variational ansatz for CFT vacuum. [vidal 05]
To increase entanglement in a CFT, we add (dis)entanglers.

Isometr
/ i Y
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(The original idea: Tensor Network of MERA ( 3 scale inv.) k

= a time slice of AdS space

\. J

However, recent detailed studies show several problems:

(1) MERA does not have any isometry other than scale inv.
(2) Why EE bound is saturated ?
(3) Sub AdS scale locality

Some of these problems may be due to lattice artifacts.
We should consider CFTs in genuine continuum limit.

In our latest work, we gave a new approach which
realizes continuous description using path-integrals.



3 Optimization of Path-Integral and AdS/CFT
(3-1) Motivation

Remember that the MERA can be obtained from
the optimization’ of tensor networks

= Tensor network renormalization [Evenbly-Vidal 14, 15]

(a) (b)
Euclidean | fﬁ::%ﬁi_, «
Path-Integral = | 3111ttt ~f 0t

MERA & | < bf Lo Il ;



Optimization of Path-Integral [wviyaji-watanabe-TT 2016]

( ————— space (x)
Euclidea

Time (-z)

TNR: Optimization of TN

Optimizgtion of g €
Path-integral ‘ e

Constant

Hyperbolic Spacg = Time slice of AdS3




(3-2) Formulating Optimization of Path-integral
[Caputa-Kundu-Miyaji-Watanabe-TT 2017]

( )
A Basic Rule: Simplify a path-integral such that it

produces the correct UV wave functional \PF'at [cD(x)]

.

Below we focus on 2d CFTs for simplicity.

Deformation of discretizations in path-integral
= Curved metric such that one cell (bit) = unit length.

B |ds® =e*™?(dx® +dz?).

Note: The original flat metric is given as follows (g is the UV cutoff):

ds® =&~ - (dx* +dz?).



Ground state UV wave function in curved space

Pl [Dd(x)]= j [1D®(x,2) e . §(d(x) - D(x, 2 = 0))

O<z<o
—00< X<00

In CFTs, owing to the Weyl invariance, we have

W~ % [ (x)]= N[#(x, 2)]- P [@(X)] -

Our Proposal (Optimization of Path-integral for CFTs):
Minimize N[@(X,2)] w.rt @¢(X,Z)

with the boundary condition e \Z:gz g,




(3-3) AdS3/CFT2 (Vaccum State)

[Caputa-Kundu-Miyaji-Watanabe-TT 2017]

Metric of Discretized Lattice : ds* = e*’ (dx* + dz?)

C
.2 —S
J.,=€""0 L
o ab ab OC6247Z :

\Pgab:5ab
S, = [dxdz|(0,4)2 +(2,¢)° +€*] ILiouville Theory]

— jdxdz[@x@2 + (5z¢ + e¢)2]

1
a4 _

2 =2dim. Hyperbolic space
= a time slice of AdS3

= Minimum:

Z



(3-4) Analysis of Excited States

Consider the vacuum state of 2d CFT on a circle
dual to a global AdS3. lw|=1
= Optimize the path-integral

on a disk with the unit radius.

The solution is simply given by (in the general expressions)
A(w)=w, B(wW)=w.

ds? — 4dwdw
(- w[’

: # Hyperbolic Disk H2



Now we insert an operator O(x)
in the center of the disk x=xO0.
O(x): conformal dim. hL=hR=h

= O(x) ~e™".

|lw|=1

C
——5
-2h
oC eZ47Z . e (0()(0).

Thus we minimize

= awawco‘%ezw LM 52wy =0,
C




Solution:  A(w)=w*®, B(W)=w", (a=1-12h/c).

Metric:  g4c2 _ 4dZdg C=w = re'

1S F)*

= Deficit angle geometry @ ~ @ + 274,

This agrees with the expected gravity dual if h/c<<1.

Note: the AdS/CFT predicts @ = J1-24h/c.
Interestingly, if we consider the quantum Liouville CFT,

then h:%(Q—ayIZ.), c=1+3Q% (Q=2/7+7).

= Weget a=+/1-24h/c.




If we insert a local operator in the path-integral:

Time

Optimize

We locallt need afine graining

Local excitation 1 etric gets larger !

(energy source)

This agrees with
general relativity !




@ Conclusions

 Holography tells us that gravitational dynamics is
dual to that of quantum entanglement in QFTs.
= Emergent spacetime from quantum entanglement !

e We argue that the optimization of Euclidean path-integral
is an interesting candidate of emergent spacetime in
AdS/CFT. This works even in continuum limit.
= Many future problems: Higher dim. version ?

Time-dependent b.g. ?

dS/CFT version ?



Motivation of Our Proposal

The normalization N estimates repetitions of same
operations of path-integration. » Minimize this !

= Our conjecture: |N[@(X,2)]= exp[C|e]]

C[@] = computational complexity of TN state

- - [Relevance of Complexity in
# Of Tensorsin TN holography: Susskind et.al.

See also Czech 1706.00965]
Our Hope Optimization of Tensor Network (~ Path-integral)

Minimizing Computational Complexity

Solving Einstein equation




Thank you !

Your visit to Kyoto U is very welcome |

Post Strings WS in YITP, Kyoto: July 2- Aug 3
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