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Why Quantum Entanglement ?

Quantum Entanglement = Measure of `Quantumness’
[`Quantumness’ 
⇒ We know the total system but not its part.]

= Structures of Quantum Matter

= Structures of Spacetime
in Gravity (or String theory)

e.g.  Surface Area = Entanglement Entropy (EE)
Perturbative Einstein eq.  = First law of EE

① Introduction

Holography (Gauge/Gravity duality, AdS/CFT)



Consider the following states in two spin systems:

(i)   A direct product state (unentangled state)

(ii) An entangled state (EPR pair)
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Independent

One determines the other !
We know the state of A+B
but not the state of A or B. 

What is the quantum entanglement ?



Entanglement entropy (EE)

Divide a quantum system into two parts A and B.
The total Hilbert space becomes factorized:

Define the reduced density matrix       for A  by

Finally, the entanglement entropy (EE)       is defined by

(von-Neumann entropy)
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Quantum Entanglement has recently been applied also 
to other topics in theoretical physics:

• Condensed Matter Theory
Entanglement Entropy (EE), Entanglement Spectrum

→ Quantum Order Parameter
~ Required `Size’ of numerical calculations

• Quantum Field Theories (QFTs)
(Renyi) Entanglement Entropy (EE)

→ Universal quantities which characterize 
the degrees of freedom of QFTs

→ Proof of c-theorem, F-theorem etc.
``Geometrization of QFTs’’



An example in Stat-Mech:  Quantum Ising spin chain 

Consider  the Ising spin chain with a transverse magnetic field:

[Vidal-Latorre-Rico-Kitaev 02, Calabrese-Cardy 04]
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[1] It is recently reported that (2nd Renyi) EE was 
measured even experimentally in a cold atom system.
[Greiner et.al. 1509.01160]

[2]  Recent Experimental realization of  `holographic EE’
arXiv:1705.00365



(2-1) AdS/CFT
[Maldacena 97]

Basic Principle 
（Bulk-Boundary relation）：

=

AdS/CFT

Classical limit Large N limit
Strong coupling limit 

CFTGravity ZZ =

Quantum Gravity (String theory) 
on d+2 dim.  AdS spacetime

(anti de-Sitter space)

Conformal Field Theory 
(CFT)  on d+1 dim. 
Minkowski spacetime

General relativity with Λ＜0
(Geometrical)

Strongly interacting 
quantum many-body systems

② Quantum Entanglement and Holography



(2-2) Holographic Entanglement Entropy  (HEE)
[Ryu-TT 06;  derived by Lewkowycz-Maldacena 13]

is the minimal area surface 
(codim.=2)  such that            

homologous
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Note: In time-dependent spacetimes,   
we need to take extremal surfaces.
[Hubeny-Rangamani-TT 07]



Holographic Proof of Strong Subadditivity
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[Headrick-TT 07]

Algebraic relations in Quantum Information Theory 
⇔ Geometric properties in Gravity



A is a round ball (radius l) in 3d CFT.   Its center is at          .  
The perturbative Einstein equation is rewritten as follows:
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l Axll =∆
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Matter field 
contributionsC.C.Kinetic term

O↔ φ
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[Nozaki-Numasawa-Prudenziati-TT 13,  Bhattacharya-TT 13]

The perturbative Einstein eq. turns out to be equivalent 
to the first law of entanglement entropy.  [Lashkari-
McDermott-Raamsdonk 13,  Faulkner-Guica-Hartman-Myers-Raamsdonk 13]
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(2-3) Einstein Equation from Entanglement



(2-4) Emergent Spacetime from Quantum Entanglement

The HEE suggests the following novel interpretation:
A spacetime in gravity  =  Bits of quantum entanglement

B
Aγ

A

Planck length

⇒ Manifestly realized in the recently argued connection 
between AdS/CFT and Tensor networks !

[Swingle 09,  cf. Raamsdonk 09, Susskind-Maldacena 13, ….]



(2-5)  Tensor Networks and AdS/CFT

Tensor Network [See e.g. Cirac-Verstraete 09(review)]

Tensor network = Geometrical description of wave function
⇒ Efficient variational ansatz for the ground state 

wave functions in quantum many-body systems. 

⇒ An ansatz should respect the correct 
quantum entanglement of ground state.
~Geometry of Tensor Network 
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MERA (Multiscale Entanglement Renormalization Ansatz):
⇒ An efficient variational ansatz for CFT vacuum.  [Vidal 05]

To increase entanglement in a CFT,  we add (dis)entanglers.

=Unitarty trsf.



Some of these problems may be due to lattice artifacts.
We should consider CFTs in genuine continuum limit.

In our latest work, we gave a new approach which 
realizes continuous description using path-integrals.  

The original idea: Tensor Network of MERA (∃scale inv.)
= a time slice of AdS space 

However, recent detailed studies show several problems: 
(1) MERA does not have any isometry other than scale inv.
(2) Why EE bound is saturated ?
(3) Sub AdS scale locality 



⇒ Tensor network renormalization [Evenbly-Vidal 14, 15]

③ Optimization of Path-Integral and AdS/CFT
(3-1) Motivation
Remember that the MERA can be obtained from 
the `optimization’ of tensor networks

Euclidean 
Path-Integral ⇒

MERA ⇐



Optimization of Path-Integral

TNR: Optimization of TN

Optimization of 
Path-integral

Euclidean 
Time (-z)

Space (x)

Hyperbolic Space = Time slice of AdS3

[Miyaji-Watanabe-TT 2016]

ε
Lattice 
Constant



Below we focus on 2d CFTs for simplicity.

Deformation of discretizations in path-integral 
= Curved metric such that one cell (bit) = unit length.

Note: The original flat metric is given as follows (ε is the UV cutoff):

).( 22),(22 dzdxeds zx += φ

(3-2) Formulating Optimization of Path-integral
[Caputa-Kundu-Miyaji-Watanabe-TT 2017]

A Basic Rule:  Simplify a path-integral  such that it
produces the correct UV wave functional [ ].)(Flat xUV ΦΨ

).( 2222 dzdxds +⋅= −ε



In CFTs, owing to the Weyl invariance, we have 

Our Proposal (Optimization of Path-integral for CFTs):

Minimize                       w.r.t 
with the boundary condition    
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(3-3) AdS3/CFT2  (Vaccum State) 
[Caputa-Kundu-Miyaji-Watanabe-TT 2017]
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[Liouville Theory]

⇒2dim. Hyperbolic space
= a time slice of AdS3



(3-4) Analysis of Excited States

Consider the vacuum state of 2d CFT on a circle
dual to a global AdS3.
⇒ Optimize the path-integral 

on a disk with the unit radius.

The solution is simply given by (in the general expressions)
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Now we insert an operator O(x) 
in the center of the disk x=x0.
O(x): conformal dim. hL=hR=h  

Thus we minimize 

O(x0)|w|=1

.~)( 2 ϕ⋅−⇒ hexO

.)(224

Flat

0
2 xhSc

eg ee L ϕπ
ϕ −= ⋅∝

Ψ

Ψ

.0)(6
4
1 22 =+−∂∂ w

c
heww δπϕ ϕ



Solution:

Metric:  

⇒ Deficit angle geometry

This agrees with the expected gravity dual if h/c<<1.

Note: the AdS/CFT predicts
Interestingly, if we consider the quantum Liouville CFT, 
then                                             

⇒ We get                                      
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If we insert a local operator in the path-integral：

Time

Optimize

We locallt need afine graining
⇒ The metric gets larger ! Local excitation

(energy source）

This agrees with 
general relativity !



④ Conclusions

• Holography tells us that gravitational dynamics is 
dual to that of quantum entanglement  in QFTs.
⇒ Emergent spacetime from quantum entanglement !

• We argue that the optimization of Euclidean path-integral 
is an interesting candidate of emergent spacetime in 
AdS/CFT.  This works even in continuum limit.
⇒Many future problems:  Higher dim. version ? 

Time-dependent b.g. ?
dS/CFT version ?

:



Motivation of Our Proposal
The normalization N  estimates repetitions of same 
operations of path-integration. → Minimize  this !

⇒ Our conjecture:   ]][exp[)],([ ϕϕ CzxN ≈

TNin  Tensors of # ~            
 state TN of complexity nalcomputatio][ ≡ϕC

[Relevance of Complexity in 
holography: Susskind et.al.
See also Czech 1706.00965] 

Solving Einstein equation 

Minimizing Computational Complexity 

Our Hope Optimization of Tensor Network (~ Path-integral)

＝
＝



Thank you !

Your visit to Kyoto U is very welcome !

Strings 2018 in OIST, Okinawa:  June 25-29 

Post Strings WS in YITP, Kyoto: July 2- Aug 3
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