# Radiation damage on silicon photo-multipliers



Erika Garutti

### Silicon Photo-Multiplier

Matrix of single avalanche diodes operated in Geiger Mode (reverse V<sub>Bias</sub> > V<sub>Breakdown</sub>)

Single photons can trigger measurable charge avalanches

#### Advantages (compared to PMT):



Smaller, cheaper,  $V_{Bias}$  < 100 V, B-field insensitive, single photon resolution **Disadvantages**:

Higher dark count rate, after-pulses + cross-talk, worse radiation hardness



laser microscope image of a KETEK SiPM

### Relevance of radiation damage in SiPM

#### Scientific motivation:

- SiPMs considered as photo-sensor of choice in many upcoming experiments
- Up to now limited investigation of radiation damage in SiPM is available

#### Imaging calorimeters for collider experiments:

- Hadronic calorimeter for ILC (CALICE)
  - $\rightarrow$  ~ 10<sup>10</sup> n/cm<sup>2</sup> in the endcap region (after 500 fb<sup>-1</sup>)
- Upgrade of hadronic calorimeter for CMS

 $\rightarrow$  6x10<sup>13</sup> n/cm<sup>2</sup> (after 3000 fb<sup>-1</sup>)

#### Space experiments:

Very high radiation expected for detectors in space
 5x10<sup>10</sup> n/cm<sup>2</sup>, AGILE gamma ray detector in geostationary orbit

Electro

### Outline

Radiation damage in silicon

- Surface damage in silicon photo-multipliers
- Bulk damage in silicon photo-multipliers
- Impact on SiPM parameters

Electron

Two types of radiation damage in silicon detectors:

Surface damage due to Ionizing Energy Loss

- Accumulation of charge in the oxide (SiO<sub>2</sub>),
- traps at Si/SiO<sub>2</sub> interface

Bulk/Crystal damage due to Non-Ionizing Energy Loss

Displacement damage, build-up of crystal defects -



Electron

Two types of radiation damage in silicon detectors:

Surface damage due to Ionizing Energy Loss

- Accumulation of charge in the oxide (SiO<sub>2</sub>),
- traps at Si/SiO<sub>2</sub> interface

### Simplified model:

- X-rays or ionizing rad. produce e-h pairs in SiO<sub>2</sub>
- Fraction of electron-hole pairs recombine
- Remaining electrons escape from SiO<sub>2</sub>
  [µ<sub>e</sub> ~ 20 cm<sup>2</sup>/(Vs)]
- Remaining holes move toward the Si-SiO<sub>2</sub> interface

 $[\mu_h \sim 5 \times 10^{-5} \text{ cm}^2/(Vs)]$ 

The trapped holes generate:

- Fixed oxide charges: Nox
- Interface traps: N<sub>it</sub>, D<sub>it</sub>(E)

which in turn lead to additional surface current



![](_page_5_Figure_16.jpeg)

Two types of radiation damage in silicon detectors:

Surface damage due to Ionizing Energy Loss

- Accumulation of charge in the oxide (SiO<sub>2</sub>),
- traps at Si/SiO<sub>2</sub> interface

Bulk/Crystal damage due to Non-Ionizing Energy Loss

Displacement damage, build-up of crystal defects '

![](_page_6_Picture_7.jpeg)

Two types of radiation damage in silicon detectors:

Surface damage due to Ionizing Energy Loss

- Accumulation of charge in the oxide (SiO<sub>2</sub>),
- traps at Si/SiO<sub>2</sub> interface

Bulk/Crystal damage due to Non-Ionizing Energy Loss
 Displacement damage, build-up of crystal defects -----

![](_page_7_Picture_6.jpeg)

Energy threshold for bulk defects generation:

| Particle        | Gamma/<br>X-ray | Electron | Proton | Neutron |
|-----------------|-----------------|----------|--------|---------|
| Frenkel pair    | 300 keV         | 255 keV  | 185 eV | 185 eV  |
| Cluster defects | -               | 8 MeV    | 35 keV | 35 keV  |

X-rays / e-

SiC

Si

E < 300 keV

![](_page_7_Picture_10.jpeg)

Electron

Hole

e- E > 300 keV

p/n

### Radiation damage in SiPM

Two types of radiation damage in silicon detectors:

Surface damage due to Ionizing Energy Loss

- Accumulation of charge in the oxide (SiO<sub>2</sub>),
- traps at Si/SiO<sub>2</sub> interface

Bulk/Crystal damage due to Non-Ionizing Energy Loss

Displacement damage, build-up of crystal defects

### Effects on an SiPM:

Surface damage:

→ Increase in leakage current

#### Bulk damage:

- $\rightarrow$  Increase in leakage current
- → Increase in after-pulse and cross-talk

#### is there any effect of the field, i.e. on $V_{bd}$ and PDE?

Electron

![](_page_8_Picture_16.jpeg)

Cross-section of a single pixel of our SiPMs

#### Compare I-V curves w/ and w/o light Reverse IV-Curves, unirradiated SiPMs Below breakdown: Avalanche multipl. range

- Surface current and first impact ionizations increase with voltage
- Nearly no multiplication for dark current ("misses" avalanche region)
  - → Sharp rise at breakdown
- Avalanche multiplication for curves with light
  - → Less abrupt rise at breakdown

### Above breakdown: Geiger mode

 Current increases due to increase in gain, breakdown-probability, cross-talk and after-pulses

![](_page_9_Picture_10.jpeg)

LED 470 nm, attenuation length ~0.5 um

# Investigation of leakage current

Hole

#### erika.garutti@physik.uni-hamburg.de

#### ||/2|

### Investigation of leakage current

**Neutron** irradiation to 10<sup>9</sup> to 10<sup>12</sup> I MeV neq/cm<sup>2</sup>

**Below breakdown:** Linear avalanche range

- leakage current increases by  $\times 10^2$
- avalanche multiplication visible  $\rightarrow$  Dark current after irradiation originates mainly from avalanche zone

### Above breakdown: Geiger mode

- Current increases by  $> \times 10^4$
- Vbd remains unchanged (accuracy 50 mV)

![](_page_10_Figure_10.jpeg)

KETEK SiPM (~4300 pixels, 15 µm pitch, 1 mm<sup>2</sup>)

Neutron irradiation @ Ljubljana reactor

No annealing performed

Electron Hole

## Investigation of leakage current

X-ray irradiation < 300 keV only surface damage

Below breakdown: Linear avalanche range
 leakage current increases by x10<sup>4</sup>

#### Above breakdown: Geiger mode

- Current increases by x2 from 0 200 kGy and by x10<sup>3</sup> above 20 MGy
- Vbd remains unchanged (accuracy 50 mV)

C. Xu, W. L. Hellweg, E. Garutti, and R. Klanner, "Influence of X-ray Irradiation on the Properties of the Hamamatsu Silicon Photomultiplier S10362-11-050C", NIMA 762 (2014) 149-161.

![](_page_11_Figure_7.jpeg)

200 Gy - 20 kGy from X-ray tube (Mo target) 2 - 20 MGy at PETRA III No annealing performed

![](_page_12_Figure_0.jpeg)

erika.garutti@physik.uni-hamburg.de

### Parenthesis on " $V_{bd}$ " determination

There are several "breakdown voltages"

#### Experimentally determined parameters:

- Gain breakdown voltage V<sub>Gain</sub>
- Current breakdown voltage V<sub>I</sub>
- PDE start voltage V<sub>PDE</sub>

#### We observe:

• 
$$V_{I} \approx V_{PDE} \neq V_{Gain} [V_{bd} = V_{I} = V_{PDE}]$$

 (V<sub>I</sub> − V<sub>Gain</sub>) > 0, and decreasing with pixel pitch [V<sub>turn-off</sub> ≠ V<sub>Gain</sub>]

#### Relevant for the SiPM user:

- $V_{Gain}$  is the relevant parameter  $Q \sim (V_{bias} V_{Gain})$  with  $V_{Gain} \neq V_{bd}$
- I(V) measurement does not give V<sub>Gain</sub>

V. Chmill, E. Garutti, R. Klanner, M. Nitschke, and J. Schwandt "Study of the breakdown voltage of SiPMs", Proceeding to VCI 2016, Submitted to NIMA.

![](_page_13_Figure_13.jpeg)

Pixel size [mum]

### Investigation of C-f curve

![](_page_14_Figure_1.jpeg)

Firing pixel Non-firing pixels

The complex resistance of a SiPM with N<sub>pix</sub> is pixels below the breakdown voltage is given by:

Electron

Hole

$$\left(\frac{1}{R_{par}} + i\omega C_{par} + N_{pix} \cdot \left(\frac{1}{i\omega C_{pix}} + \frac{R_q}{1 + i\omega C_q R_q}\right)^{-1}\right)^{-1}$$

Measure freq. dependent parallel  $R_p$  and  $C_p$  on an LCR meter, and extract serial  $R_s$  and  $C_s$ 

![](_page_14_Figure_6.jpeg)

### Impact on SiPM parameters: $R_q$ , $C_{pix}$

#### **Neutron** irradiation to 10<sup>9</sup> to 10<sup>12</sup> I MeV neq/cm<sup>2</sup>

![](_page_15_Figure_2.jpeg)

Quenching resistor and pixel capacitance do not change after neutron (and X-ray) irradiation

KETEK SiPM (~4300 pixels, 15 µm pitch, 1 mm<sup>2</sup>)

Neutron irradiation @ Ljubljana reactor No annealing performed

### Impact on SiPM parameters: DCR, XT

Electron

Hole

X-ray irradiation < 300 keV only surface damage

#### Dark count rate (DCR):

- small increase ~10% for 0-20 kGy
- increase by x3 for  $\Delta V > 1.5 V$  and 20 MGy
- rapidly increasing with  $\Delta V$ 
  - → maximum useful gain limited

#### Cross-talk (XT):

- negligible change for 0-20 kGy
- unexpected increase for > 2 MGy

![](_page_16_Figure_12.jpeg)

Hamamatsu SiPM (MPPC 50um pitch, I mm<sup>2</sup>)

C. Xu, W. L. Hellweg, E. Garutti, and R. Klanner, "Influence of X-ray Irradiation on the Properties of the Hamamatsu Silicon Photomultiplier S10362-11-050C", NIMA 762 (2014) 149-161.

200 Gy - 20 kGy from X-ray tube (Mo target)2 - 20 MGy at PETRA IIINo annealing performed

erika.garutti@physik.uni-hamburg.de

### Impact on SiPM parameters: DCR, A

**Neutron** irradiation to  $3.7 \times 10^9$  neq/cm<sup>2</sup>

### Dark count rate (DCR):

increase by x8-10

### Signal amplitude:IO-I5% signal loss

![](_page_17_Figure_5.jpeg)

Hamamatsu & SensL SiPM

Monitored during irradiation Operated at fixed gain of 0.75 x 10<sup>6</sup> Neutron irradiation @ JLAB with 1 GeV e- on Pb

Y. Quiang et al., Radiation hardness test of SiPMs for the J-Lab Hall D Barrel Calorimeter, Nucl. Inst. And Meth. A 698 (2013) 234-241

erika.garutti@physik.uni-hamburg.de

Electron

### Impact on SiPM parameters: DCR, A

**Neutron** irradiation to  $3.7 \times 10^9$  neq/cm<sup>2</sup>

#### Dark count rate (DCR):

increase by x8-10

only 50% restored after 50 h room T annealing

#### Signal amplitude:

- IO-I5% signal loss
- I00% restored after 50 h room T annealing

![](_page_18_Figure_8.jpeg)

![](_page_18_Figure_9.jpeg)

#### Hamamatsu & SensL SiPM

Monitored during irradiation Operated at fixed gain of 0.75  $\times$  10<sup>6</sup> Neutron irradiation @ JLAB with 1 GeV e- on Pb

erika.garutti@physik.uni-hamburg.de

### Impact on SiPM parameters: DCR

**Neutron** irradiation up to  $12 \times 10^{11}$  neq/cm<sup>2</sup>

![](_page_19_Figure_2.jpeg)

Detector still functional after irradiation Single photon sensitivity with fast readout and at -40°C

David Gerick (Heidelberg University) for the LHCb Collaboration, DPG Frühjahrstagung 2016

Hamamatsu S10943-3183 (custom made - LHCb)

128 ch. with each 4x24 pixels ( $62.5x57.5 \ \mu m^2$ ) Operated at T = -40°C

Electron

### Conclusion

- SiPMs remain efficient photodetectors after irradiation with X-rays and hadrons
- Detection efficiency and gain hardly affected by radiation damage
- After hadron damage (dependent on T) calibration using single PE not applicable
  - $\rightarrow$  different calibration methods to be developed
- Observed increase of DCR (on different SiPM types):
  - factor  $\times 10$  after 3.7  $\times 10^9$  neq/cm<sup>2</sup> neutron irradiation
  - factor >  $\times 10^6$  after 1.2  $\times 10^{12}$  neq/cm<sup>2</sup> neutron irradiation
  - factor x3 for 20 MGy X-ray irradiation
  - only partially recovered with annealing

#### Wished studies for the future:

- Consistent series of studies for various SiPMs
- Investigation of exact cause of DCR increase
- Disentangling surface and bulk damage effects

Electror