

Introduction to Synchrotron Radiation Detectors

Heinz Graafsma Photon Science Detector Group DESY-Hamburg; Germany heinz.graafsma@desy.de

XFEL Beamline Layout

The Detector Challenge:

- **Spectroscopy** (determine energy of the X-rays):
 - meV 1 keV resolution
 - time resolved (100 psec) static
- **Imaging** (determine intensity distribution)
 - Micro-meter millimeter resolution
 - Tomographic
 - Time resolved
- Scattering (determine intensity as function momentum transfer = angle)
 - Small angel protein crystallography
 - Diffuse Bragg
 - Crystals liquids

What are the basic principles ?

- 1. In order to detect you have to transfer energy from the particle to the detector
- 2. X-ray light is quantized (photons)
- 3. A photon is either fully absorbed or not at all (no track like for MIPs)
- 4. The energy absorbed is transferred into an electrical signal and then into a number (digitized).

Signal Generation -> Needs transfer of Energy

Any form of elementary excitation can be used to detect the radiation signal:

Ionization (gas, liquids, solids) Excitation of optical states (scintillators) Excitation of lattice vibrations (phonons) Breakup of Cooper pairs in superconductors

Typical excitation energies:

Ionization in semiconductors:1 - 5 eVScintillation:appr. 20 eVPhonons:meVBreakup of Cooper pairs:meV

Band structure (3)

What would you like to know about your X-rays?

- 1. Intensity or flux (photons/sec)
- 2. Energy (wavelength)
- 3. Position (or mostly angles)
- 4. Arrival time (time resolved experiments)
- 5. Polarization

4 modes of detection

- 1. Current (=flux) mode operation
- 2. Integration mode operation
- 3. Photon counting mode operation
- 4. Energy dispersive mode operation

Current mode operation

Integrating mode operation

Photon counting mode

Energy dispersive mode

Some general detector parameters

- <u>QE</u> = quantum efficiency = fraction of incoming photons detected (<1.0). You want this to be as high as possible.
- <u>DQE</u> = detective quantum efficiency =

$$\frac{(signal/noise)_{out}}{(signal/noise)_{in}} \leq 1.0$$

You can never increase signal, nor decrease noise! So signal to noise will always degrade in the detector. (NB: signal to noise is the most important parameter when you measure something!)

 <u>Gain</u> = relation between your signal strength (V, A, ADU) and the number of photons.

Some more parameters for 2D systems

- Point Spread Function (PSF) (Line spread function (LSF) or spatial resolution):
 - A very small beam (smaller than the pixel size) will produce a spot with a certain size and shape. Very important are the FWHM; and the tails of the PSF.
 - This is experimentally difficult → use sharp edge and LSF
 - Note: pixel size is not spatial resolution! (but should be close to it in an optimal design).

Some more parameters for 2D systems

• Modulation Transfer Function (MTF):

How is a spatially modulated signal (line pattern) recorded (transferred) by the detector?

 $Modulation \equiv contrast \equiv \frac{Max - Min}{Max + Min}$

This depends on the frequency. Is directly related to the LSF and the DQE

Some more parameters for 2D systems

• Modulation Transfer Function (MTF) Example

Ideal:
$$contrast = \frac{100 - 0}{100 + 0} = 1.0$$

Effect of noise:
$$contrast = \frac{150-50}{150+50} = 0.5$$

Effect of PSF:
$$contrast \equiv \frac{75-25}{75+25} = 0.5$$

FEL Sources vs. Storage Rings

- Pulse length: 10³ shorter (100 fsec vs 100 psec)
- Emmittance: 10² horizontal, 3 vertical lower
- Intensity per pulse: 3x10² higher (10¹² ph)
- Monochromaticity: 10 better

➔ Peak brilliance: 10⁹ higher

FEL Challenge: Different Science

 Completely new science

- Fast science 100 fsec
- "Single shot" science

Consequences for the detector:

(H.Graafsma; Jinst, 4, P12011, (2009))

- Single shot-science: 10¹² ph in 100 fsec
 → (complete) ionization of sample; followed by coulomb explosion.
- Fortunately scattering is faster: "diffract-anddestroy". (<50 fsec) (Nature <u>406</u>, 752, (2000)).
- Crystal diffraction is "self-gating" (*Nature Photonics*, <u>6</u>, 35, (2012)).

Single shot imaging...

Consequences for the detector:

- Single shot-science: 10¹² ph in 100 fsec → (complete) ionization of sample; followed by coulomb explosion.
- Fortunately scattering is faster: "diffract-and-destroy".
 (<50 fsec) (*Nature* <u>406</u>, 752, (2000)).
- Crystal diffraction is "self-gating" (*Nature Photonics*, <u>6</u>, 35, (2012)).
- Central hole in detector & no beamstop: 10¹² ph
 @ 12 keV → 1K rise in mm³ Cu → 3000 K per bunch train + huge background

- > 5000 h User-operation per year
- ➤ Undulator shared between 2 experiments → 2500 hrs/exp./year
- > Date taking 50% (rest alignment etc.) → 1250 hrs/year
- Each branch can take ½ of the load: 15000 pulses/sec

→ 6.75 10¹⁰ pulses/year

- Certain experiments expect 5 x10⁴ photons per pixel (200 µm) per pulse. Small angle and liquid scattering always same place on detector
 - \rightarrow 3.4 10¹⁵ photons/year = 10¹⁶ ph/3 years
- (@ 12 keV \rightarrow silicon surface dose of 1 Giga Gray!!!)

- > 12 keV = 0.1 nm in order to study features (d) to atomic resolution.
- > Bragg's law $(2dsin(\theta) = \lambda) \rightarrow 2\theta = 60$ degrees $\rightarrow 120$ degrees total

Liquid scattering: momentum transfer 10 $A^{-1} \rightarrow 200$ degrees \rightarrow back scattering

Angular resolution 2 examples:

Coherent Diffractive Imaging (CDI):

- > 0.1 nm spatial features: d_{min}
- > 100 nm samples (e.g. virus): D

→Nyquist →>2000 sampling points (pixels) →0.5 mrad

 $\Delta 2\theta = d_{min} x asin(\lambda/2d_{min}) / 2D$

X-ray Photon Correlation Spectroscopy:

Speckle size: $\Theta_s = \lambda/D$, D is sample or beam size

Compromise between sample heating (large beam) and speckle size (small beam)

25 μ m beam at λ =0.1 nm \rightarrow 4 μ rad speckles (80 μ m at 20 m)

Electron bunch trains; up to 2700 bunches in 600 μ sec, repeated 10 times per second. Producing 100 fsec X-ray pulses (up to 27 000 bunches per second).

XFEL Detector requirements

The XFEL solutions: Hybrid Pixel Array Detectors

Hybrid Pixel Array Detector (HPAD)

Diode Detection Layer

Hybrid Pixel Detectors

Particle / X-ray \rightarrow **Signal Charge** \rightarrow **Electr. Amplifier** \rightarrow **Readout** \rightarrow **Digital Data**

The new generation: Medipix et al.

Why are HPADs so popular ?

- Custom design of functionality: you design your readout chip specific for your application (unlike CCDs).
- Direct detection → good spatial resolution
- Massive parallel detection → high flux
- But: development takes long and is expensive.

The Adaptive Gain Integrating Pixel Detector The AGIPD consortium:

PSI/SLS -Villingen: chip design; interconnect and module assembly

Universität Bonn: chip design

Universität Hamburg: radiation damage tests, "charge explosion" studies; and sensor design

DESY: chip design, interface and control electronics, mechanics, cooling; overall coordination

Some Facts

6 years development

~ 20 people

Some Milestones

First 16x16 pixels prototype Definition of final design Production, assembly and test End 2010 Summer 2011 >2013

The Adaptive Gain Integrating Pixel Detector

High dynamic range:

Dynamically gain switching system

AGIPD03 Gains ⁰ Gy

AGIPD – Analogue Memory & Radiation Hardness

>Droop (loss of signal)

•Time

Radiation dose

Electron bunch trains; up to 2700 bunches in 600 μ sec, repeated 10 times per second. Producing 100 fsec X-ray pulses (up to 27 000 bunches per second).

AGIPD03 Memory Leakage

AGIPD ASIC

Imaging with AGIPD 0.2 prototype

The Adaptive Gain Integrating Pixel Detector

Base plate

HDI

Connector to interface

Calibration challenges:

- > $10^6 \times 3$ gains; with > 10 points per gain curve: O(10⁷)
- > 10⁶ x 350 storage cells > 10 points per droop curve: O(10⁹)
- > How to store the calibration data and how to correct data?
- How often do we need to recalibrate
- > On-chip calibration sources
- Cross calibration with physics (photons, alpha, ...)
- > How long does this all take?

Some reflections on the future

Active Sensors (DSSC)

DSSC - DEPMOS Sensor with Signal Compression

- > DEPFET per pixel
- Very low noise (good for soft X-rays)
- > non linear gain (good for dynamic range)
- > per pixel ADC
- > digital storage pipeline
 - >Hexagonal pixels 200µm pitch
 - combines DEPFET
 - with small area drift detector (scaleable)

- MPI-HLL, Munich
- > Universität Heidelberg
- > Universität Siegen
- > Politecnico di Milano
- > Università di Bergamo
- > DESY, Hamburg

Electrons are collected in a storage well

\Rightarrow Influence current from source to drain

Some reflections on the future

- Active Sensors (DSSC)
- Built-in intelligence per pixel (AGIPD)

Some reflections on the future

- Active Sensors (DSSC)
- Built-in intelligence per pixel (AGIPD)
- Communication pixels (Medipix-3)

Medipix3 – charge summing concept

Some reflections on the future

- Active Sensors (DSSC)
- Built-in intelligence per pixel (AGIPD)
- Communication pixels (Medipix-3)
- More functionality per area/pixel: 3D-ASIC technology (Helmholtz Cube)

Hvbridization

- Cut the sensor as close as possible
- Use thinned readout chips
- Stay within the exact n-fold pixel pitch

XFS Module Specification: PSI/SLS

Operate 2x4 (8) Chips per Module. ~78 x 39 mm²

Courtesy: Ch. Brönnimann, PSI SLS Detector Group 54

Current State-of-the-art

The "Helmholtz-Cube"

Vertically Integrated Detector Technology

Technology enablers: Wafer thinning

Technology:

- rough/fine grinding, dry/wet etch at wafer level
- Si, glass, GaAs, ...
- critical: thinning damage, impact on devices
- very thin wafers (< 100 um): use of carrier wafers and temporary (de-)bonding technology

Features:

- thinning down to 15 um
- total thickness variation < 1 um

Advantages/Applications:

- thin (3D) integration
- embedding in flexible substrates
- backside illuminated imagers
- ultra low X₀ -> tracking detectors

imec

Technology enablers: TSV processing during CMOS process

Technology:

- fabrication at device level, i.e. as a part of (CMOS) flow
- after FEOL, before BEOL
- will become established in advanced CMOS foundries (core partners, e.g. TSMC, Matsushita, Intel, Micron, ...) participate in 3D IC work at IMEC

Specifications:

- Si thickness: 10 20 um
- via diameter: 3 5 um
- via pitch: 10 um

Applications:

- Pixel level interconnect
- imager/processor/logic/memory stacking

Conclusions & outlook II

- High sensitivity by extreme thinning and backside illumination
- 3D integration technology will allow manufacturing of advanced detection systems:
 - complex imaging detectors using high density 3D interconnects (≥1 per pixel) between different intelligent layers:
 detection layer

- Economical aspects:
 - (large) commercial foundries will offer 3D in (near) future
 - But: typically large volume
 - Solution: IMEC prototyping/small scale production "CMORE"

The "Helmholtz-Cube"

Vertically Integrated Detector Technology

Detector systems: RelaxD: tilable X-ray imagers

- Issue: bad pixels at imager boundary due to damage by dicing
- Solution: edgeless detector concept:

ANalytical

 Replace dicing by trench etching and proper passivation

Status:

- 3D integration ongoing
- minimal dead area by trench singulation and in situ passivation

Summary Detectors

- Signal-to-noise ratio most fundamental parameter in measurements.
- A detector is always a compromise (ex. speed vs. noise). Application determines what you compromise.
- Never take a detector as a "perfect black box", be aware of limitations.
- Understanding your detector is part of understanding your science.