Scintillation Detectors Particle Detection via Luminescence

Scintillators – General Characteristics

Principle:

dE/dx converted into visible light Detection via photosensor [e.g. photomultiplier, human eye ...]

Main Features:

Sensitivity to energy Fast time response Pulse shape discrimination

Requirements

High efficiency for conversion of exciting energy to fluorescent radiation Transparency to its fluorescent radiation to allow transmission of light Emission of light in a spectral range detectable for photosensors Short decay time to allow fast response

Scintillators – Basic Counter Setup

Inorganic Crystals

Materials:

. . .

Sodium iodide (Nal) Cesium iodide (Csl) Barium fluoride (BaF₂)

Mechanism:

Energy deposition by ionization Energy transfer to impurities Radiation of scintillation photons

Time constants:

Fast: recombination from activation centers [ns ... μ s] Slow: recombination due to trapping [ms ... s]

Energy bands in impurity activated crystal

showing excitation, luminescence, quenching and trapping

Inorganic Crystals

Example CMS Electromagnetic Calorimeter

Inorganic Crystals – Time Constants

Inorganic Crystals – Light Output

Inorganic Crystals – Light Output

Scintillation in Liquid Nobel Gases

Inorganic Scintillators – Properties

Scintillator material	Density [g/cm ³]	Refractive Index	Wavelength [nm] for max. emission	Decay time constant [µs]	Photons/MeV
Nal	3.7	1.78	303	0.06	8·10 ⁴
Nal(TI)	3.7	1.85	410	0.25	4 · 10 ⁴
CsI(TI)	4.5	1.80	565	1.0	1.1·10 ⁴
Bi ₄ Ge ₃ O ₁₂	7.1	2.15	480	0.30	2.8·10 ³
CsF	4.1	1.48	390	0.003	2 · 10 ³
LSO	7.4	1.82	420	0.04	1.4·10 ⁴
PbWO ₄	8.3	1.82	420	0.006	2·10 ²
LHe	0.1	1.02	390	0.01/1.6	2·10 ²
LAr	1.4	1.29*	150	0.005/0.86	4 · 10 ⁴
LXe	3.1	1.60*	150	0.003/0.02	4 · 10 ⁴

* at 170 nm

Inorganic Scintillators – Properties

Numerical examples:

 $\begin{array}{ll} \mbox{Nal(Tl)} & \lambda_{max} = 410 \ \mbox{nm;} \ \mbox{hv} = 3 \ \mbox{eV} \\ \mbox{photons/MeV} = 40000 \\ & \tau = 250 \ \mbox{ns} \\ \end{array}$ $\begin{array}{ll} \mbox{PBWO}_4 & \lambda_{max} = 420 \ \mbox{nm;} \ \mbox{hv} = 3 \ \mbox{eV} \\ \mbox{photons/MeV} = 200 \\ \end{array}$

Scintillator quality:

Light yield – $\varepsilon_{sc} =$ fraction of energy loss going into photons

 $\mathbf{T} = 6 \, \mathrm{ns}$

e.g. Nal(TI) : 40000 photons; 3 eV/photon $\rightarrow \epsilon_{sc} = 4 \cdot 10^4 \cdot 3 \text{ eV}/10^6 \text{ eV} = 11.3\%$ PBWO₄: 200 photons; 3 eV/photon $\rightarrow \epsilon_{sc} = 2 \cdot 10^2 \cdot 3 \text{ eV}/10^6 \text{ eV} = 0.06\%$ [for 1 MeV particle]

Organic Scintillators

Aromatic hydrocarbon compounds:

e.g. Naphtalene [C₁₀H₈] Antracene [C₁₄H₁₀] Stilbene [C₁₄H₁₂]

Very fast! [Decay times of O(ns)]

. . .

Scintillation light arises from delocalized electrons in π -orbitals ...

Transitions of 'free' electrons ...

Organic Scintillators

Molecular states:

Singlet states Triplet states

Fluorescence in UV range [~ 320 nm]

usage of wavelength shifters

Fluorescence : $S_1 \rightarrow S_0 [< 10^{-8} s]$ Phosphorescence : $T_0 \rightarrow S_0 [> 10^{-4} s]$

Organic Scintillators

Transparency requires:

Shift of absorption and emission spectra ...

Shift due to

Franck-Condon Principle

Excitation into higher vibrational states De-excitation from lowest vibrational state

Plastic and Liquid Scintillators

In practice use ...

solution of organic scintillators [solved in plastic or liquid]

+ large concentration of primary fluor

+ smaller concentration of secondary fluor + ...

Scintillator requirements:

Solvable in base material

High fluorescence yield

Absorption spectrum must overlap with emission spectrum of base material

LSND experiment

Plastic and Liquid Scintillators

Plastic and Liquid Scintillators

Some widely used solvents and solutes

	solvent	secondary	tertiary
		fluor	fluor
Liquid	Benzene	p-terphenyl	POPOP
scintillators	Toluene	DPO	BBO
	Xylene	PBD	BPO
Plastic	Polyvinylbenzene	p-terphenyl	POPOP
scintillators	Polyvinyltoluene	DPO	TBP
	Polystyrene	PBD	BBO
			DPS

p-Terphenyl

POPOP

Wavelength Shifting

Principle:

Absorption of primary scintillation light

Re-emission at longer wavelength

Adapts light to spectral sensitivity of photosensor

Requirement:

Good transparency for emitted light

Schematics of wavelength shifting principle

Organic Scintillators – Properties

Scintillator material	Density [g/cm³]	Refractive Index	Wavelength [nm] for max. emission	Decay time constant [ns]	Photons/MeV
Naphtalene	1.15	1.58	348	11	4 · 10 ³
Antracene	1.25	1.59	448	30	4 · 10 ⁴
p-Terphenyl	1.23	1.65	391	6-12	1.2·10 ⁴
NE102*	1.03	1.58	425	2.5	2.5·10 ⁴
NE104*	1.03	1.58	405	1.8	2.4·10 ⁴
NE110*	1.03	1.58	437	3.3	2.4·10 ⁴
NE111*	1.03	1.58	370	1.7	2.3·10 ⁴
BC400**	1.03	1.58	423	2.4	$2.5 \cdot 10^2$
BC428**	1.03	1.58	480	12.5	2.2·10 ⁴
BC443**	1.05	1.58	425	2.2	2.4·10 ⁴

* Nuclear Enterprises, U.K. ** Bicron Corporation, USA

Organic Scintillators – Properties

Organic Scintillators – Properties

Light yield: [without quenching]

$$\frac{dL}{dx} = L_0 \frac{dE}{dx}$$

Quenching: non-linear response due to saturation of available states

Birk's law:

$$\frac{dL}{dx} = L_0 \ \frac{\frac{dE}{dx}}{1 + kB\frac{dE}{dx}}$$

[kB needs to be determined experimentally]

Also other parameterizations ...

Response different for different particle types ...

Scintillators – Comparison

Inorganic Scintillators

Advantages	high light yield [typical; $\epsilon_{sc} \approx 0.13$] high density [e.g. PBWO ₄ : 8.3 g/cm ³] good energy resolution	
Disadvantages	complicated crystal growth large temperature dependence	Expensive

Organic Scintillators

Advantages	very fast easily shaped small temperature dependence pulse shape discrimination possible	
Disadvantages	lower light yield [typical; $\epsilon_{sc} \approx 0.03$] radiation damage	Cheap

Scintillation Counters – Setup

Scintillation Counters – Setup

Photon Detection

Purpose : Convert light into a detectable electronic signal Principle : Use photo-electric effect to convert photons to photo-electrons (p.e.)

Requirement :

High Photon Detection Efficiency (PDE) or Quantum Efficiency; $Q.E. = N_{p.e.}/N_{photons}$

Available devices [Examples]:

Photomultipliers [PMT] Micro Channel Plates [MCP] Photo Diodes [PD]

HybridPhoto Diodes [HPD] Visible Light Photon Counters [VLPC] Silicon Photomultipliers [SiPM]

Photomultipliers

Principle:

Electron emission from photo cathode

Secondary emission from dynodes; dynode gain: 3-50 [f(E)]

Typical PMT Gain: > 10⁶ [PMT can see single photons ...]

Photomultipliers – Photocathode

Bialkali: SbRbCs; SbK₂Cs

4-step process:

Electron generation via ionization Propagation through cathode Escape of electron into vacuum

Q.E. $\approx 10-30\%$ [need specifically developed alloys]

Photomultipliers – Dynode Chain

Multiplication process:

Electrons accelerated toward dynode Further electrons produced \rightarrow avalanche

Secondary emission coefficient:

 $\delta = #(e^{-} produced)/#(e^{-} incoming)$

Typical:
$$\delta = 2 - 10$$

n = 8 - 15 $\rightarrow G = \delta^n = 10^6 - 10^8$

 $\begin{array}{ll} \mbox{Gain fluctuation:} & \mbox{\boldmathδ} = kU_D; \mbox{\boldmathG} = a_0 (kU_D)^n \\ & \mbox{\boldmathdG/G$} = n \mbox{\boldmath$dU_D} / U_D = n \mbox{\boldmathdU_B$} / U_B \\ \end{array}$

Photomultipliers – Dynode Chain

Photomultipliers – Energy Resolution

Energy resolution influenced by:

Linearity of PMT: at high dynode current possibly saturation by space charge effects; $I_A \propto n_Y$ for 3 orders of magnitude possible ...

light collection efficiency

Photoelectron statistics: given by poisson statistics.

$$P_n(n_e) = \frac{n_e^n \ e^{-n_e}}{n!} \quad \text{with } n_e \text{ given} \\ \text{by dE/dx ...} \\ \sigma_n/\langle n \rangle = 1/\sqrt{n_e} \quad \text{with } n_e \text{ given} \\ \sigma_n/\langle n \rangle = 0.2; \text{ Q.E. =0.25} \quad n_e = 20000 \\ \sigma_n/\langle n \rangle = 0.7\%$$

Secondary electron fluctuations:

Photomultipliers – Energy Resolution

Micro Channel Plate

"2D Photomultiplier"

Gain: 5 · 10⁴ Fast signal [time spread ~ 50 ps] B-Field tolerant [up to 0.1T]

But: limited life time/rate capability

Silineon Phrotomultipilie Siege Mudaayout

Principle:

Pixels photo diodes operated in Geiger mode (non-linear response) Single pixel works as a binary device

Energy = #photons seen by summing over all pixels

Features:

Granularity	:	10 ³ pixels/mm ²
Gain	:	10 ⁶
Bias Voltage	:	< 100 V
Efficiency	•	ca. 30 %

Works at room temperature! Insensitive to magnetic fields

Silicon Photomultipliers

HAMAMATSU MPPC 400Pixels

One of the first SiPM Pulsar, Moscow

Silicon Photomultipliers

Scintillation Counters – Applications

Time of flight (ToF) counters Energy measurement (calorimeters) Hodoscopes; fibre trackers Trigger systems

> ATLAS Minimum Bias Trigger Scintillators

Particle track in scintillating fibre hodoscope

H1 – Spaghetti Calorimeter

Scintillator : BICRON BCF-12 Photosensor : Photomultipliers

CMS – Crystal Calorimeter (ECAL)

CMS – Crystal Calorimeter (ECAL)

Scintillator : PBW0₄ [Lead Tungsten] Photosensor : APDs [Avalanche Photodiodes]

> Number of crystals: ~ 70000 Light output: 4.5 photons/MeV

ATLAS – Tile Calorimeter

CALICE – Analogue HCAL

1m³-Prototype 38 layers

Sandwich structure:

- Scintillator Tiles+WLS+SiPMs (.5 cm)
- Stainless steel absorber (1.6 cm)

2006/2007 CERN Testbeam [2008/09, Fermilab]

Scintillator : Plastic Photosensor : SiPMs

CALICE – Scintillator ECAL

Scintillator layers: 2 mm Tungsten layers: 3 mm

X/Y-Strips: $1 \times 4 \text{ cm}^2$ Granularity: $1 \times 1 \text{ cm}^2$

SiPM

[1600 pixels]

Readout: MPPC Channels: ~ 10^7