Gaseous detectors measurement of ionization position determination

Introduction

- Primary Ionization
- Secondary Ionization (due to δ-electrons)

Introduction

Primary Ionization

Secondary Ionization (due to δ-electrons)

Ionization

Primary ionization

$$X + p \rightarrow X^+ + p + e$$

Secondary ionization

$$X + e^{-} \rightarrow X^{+} + e^{-} + e^{-}$$

p = charge particle traversing the gas

X = gas atom

 e^{-} = delta-electron (δ)

if E_{δ} is high enough (E_{δ} > E_{i})

Relevant Parameters for gas detectors

Ionization energy Average energy/ion pair Average number of primary ion pairs [per cm] Average number of ion pairs [per cm]

Typical values:

 $E_i \sim 30 \text{ eV}$ n_T ~ 100 pairs / 3 keV incident particle

Table for most common gases

Gas	$ ho$ (g/cm 3) (STP)	<i>I₀</i> (eV)	W _i (eV)	<i>dE/dx</i> (MeVg ⁻¹ cm ²)	<i>n_p</i> (cm ⁻¹)	<i>n_t</i> (cm ⁻¹)
H ₂	8.38 · 10 ⁻⁵	15.4	37	4.03	5.2	9.2
He	1.66 · 10 ⁻⁴	24.6	41	1.94	5.9	7.8
N ₂	1.17 · 10 ⁻³	15.5	35	1.68	(10)	56
Ne	8.39 · 10 ⁻⁴	21.6	36	1.68	12	39
Ar	1.66 · 10 ⁻³	15.8	26	1.47	29.4	94
Kr	3.49 · 10 ⁻³	14.0	24	1.32	(22)	192
Xe	5.49 · 10 ⁻³	12.1	22	1.23	44	307
CO ₂	1.86 · 10 ⁻³	13.7	33	1.62	(34)	91
CH ₄	6.70 · 10 ⁻⁴	13.1	28	2.21	16	53
C ₄ H ₁₀	2.42 · 10 ⁻³	10.8	23	1.86	(46)	195

 $(\mathsf{E}_{i} = \mathsf{I}_{o})$

Quelle: K. Kleinknecht, Detektoren für Teilchenstrahlung, B.G. Teubner, 1992

Ionization statistics

Production of ion/electron pairs is a Poissonian distributed

$$P(n_p, \langle n_p \rangle) = \frac{\langle n_p \rangle^{n_p} e^{-\langle n_p \rangle}}{n_p!}$$

with $\langle n_p \rangle = L/\lambda$ and $\lambda = 1/(n_e \sigma_I)$

Recombination and electron attachment:

Admixture of electronegative gases (O₂, F, CI) influences detection efficiency Diffusion:

Influences the spatial resolution ...

Mobility of charges:

Influences the timing behavior of gas detectors ...

Avalanche process via impact ionization:

Important for the gain factor of the gas detector ...

Transport of electrons/ions in gas

Diffusion:

classical kinetic theory of gases

$$\frac{\mathrm{dN}}{\mathrm{dx}} = \frac{\mathrm{N}_{\mathrm{0}}}{\sqrt{4\pi\mathrm{Dt}}} \exp\left(-\frac{\mathrm{x}^{2}}{4\mathrm{Dt}}\right)$$

after a diffusion time t the electrons/ions are Gaussian distributed with a spread

$$\sigma(r) = \sqrt{6Dt}$$
 where D is the diffusion coefficient

the mean free path of electrons/ions in the gas:

the mean velocity according to Maxwell distribution:

$$\mathsf{D} = \frac{1}{3}v\lambda = \frac{2}{3\sqrt{\pi}}\frac{1}{P\sigma_0}\sqrt{\frac{(\mathsf{kT})^3}{\mathsf{m}}}$$

D depends on gas pressure P and temperature T

 $\lambda = \frac{1}{\sqrt{2}} \frac{\mathbf{kT}}{\sigma_0 P}$

 $v = \sqrt{\frac{8kT}{2}}$

Diffusion in electric field

Drift in direction of E-field superimposed to statistical diffusion

Extra velocity influences longitudinal diffusion Transverse diffusion not affected

E-field reduced diffusion in longitudinal direction

Diffusion in magnetic field

In the presence of a B-field different effects on longitudinal and transverse diffusion

No Lorentz force along B-field direction

Transverse diffusion as function of drift length for different B fields

B-Field can substantially reduce diffusion in transverse direction

Transport of electrons/ions in gas

Drift and Mobility:

with external E-field: electrons/ions obtain velocity v_D in addition to thermal motion; on average electrons/ions move along field lines of electric field E

 $\vec{v}_{\rm D} = \mu_{\pm} |\vec{\mathsf{E}}|$

μ_+ : ion mobility

for ions $v_D \sim E/P$, i.e. for constant pressure constant mobility

typical: E ~ 1 kV / cm-atm`

μ_{-} : electron mobility

in cold gas approximation $(T_{kin} \sim kT) \rightarrow v_D \sim E, \mu = \text{const.}$ in hot gas $(T_{kin} \gg kT) \rightarrow v_D = \text{const.}, \mu = \text{not const.}$

Compare:

Electrons: v_D of order cm/µs lons: v_D of order cm/ms

Einstein relation for ideal gases in thermal equilibrium the gain in velocity may affect the diffusion rate and thereby the time behavior of the detector (e.g. drift chamber) 10

Drift velocity

Drift velocity

Drift velocity in several argon-isobutane (C₄H₁₀) mixtures

Avalanche multiplication

Large electric field yields large kinetic energy of electrons ...

➤ Avalanche formation

Larger mobility of electrons results in liquid drop like avalanche with electrons near head ...

Mean free path: λ_{ion} [for a secondary ionization]

Probability of an ionization per unit path length: $\alpha = 1/\lambda_{ion}$ [1st Townsend coefficient]

 $dn = n \cdot \alpha \, dx$ $n = n_0 e^{\alpha x}$

Gain:

$$G = \frac{n}{n_0} = e^{\alpha x} \quad \text{ and more general for } \mathbf{\alpha} = \mathbf{\alpha}(\mathbf{x}): \quad G = \frac{n}{n_0} = \exp\left[\int_{x_1}^{x_2} \alpha(x) dx\right]$$

n(x) = electrons

at location x

[Raether limit: $G \approx 10^8$; $\alpha x = 20$; then sparking sets in ...]

Townsend avalanche

Left: cloud champer picture

Right: schematic view

Avalanche multiplication

Gas amplification factor

lonization mode:

full charge collection no multiplication; gain ≈ 1

Proportional mode:

multiplication of ionization signal proportional to ionization measurement of dE/dx secondary avalanches need quenching; gain $\approx 10^4 - 10^5$

Limited proportional mode: [saturated, streamer]

strong photoemission requires strong quenchers or pulsed HV; gain $\approx 10^{10}$

Geiger mode:

massive photoemission; full length of the anode wire affected; discharge stopped by HV cut

Proportional counter

Planar design disadvantage:

E uniform and ⊥ to the electrodes
amount of ionization produced proportional to path length
and to position where the ionization occurs
→ not proportional to energy

Problem solved using Cylindrical proportional counter:

Single anode wire in a cylindrical cathode $E \sim 1/r$: weak field far from the wire electrons/ions drift in the volume multiplication occurs only near the anode

Avalanche development

Time development of an avalanche near the wire of a proportional counter

- a) a single primary electron proceeds towards the wire anode,
- b) in the region of increasingly high field the electron experiences ionizing collisions (avalanche multiplication),
- c) electrons and ions are subject to lateral diffusion,
- d) a drop-like avalanche develops which surrounds the anode wire,
- e) the electrons are quickly collected (~1ns) while the ions begin drifting towards the cathode generating the signal at the electrodes.

[Capacity per unit length]

Pulse formation and shape:

Again, pulse signal is formed by induction due to the movement of charges towards cathode and anode ...

Electric field:

$$E(r) = \frac{CV_0}{2\pi\epsilon_0} \frac{1}{r} \qquad \text{with } C = \frac{2\pi\epsilon_0}{\ln b/a}$$

cylinder length: l

Electric potential:

$$\phi(r) = -\frac{CV_0}{2\pi\epsilon_0} \ln\frac{r}{a}$$

 $d \neq (m)$

Consider charge q: [Assume fast charge movement ...]

No compensation

by power supply

$$dW = q \frac{d\phi(r)}{dr} dr$$
 change in potentia
energy
$$dW = l CV_0 dV$$
 electrostatic
energy
from: $W = \frac{1}{2} l CV_0^2$

[Capacity: lC !]

Energy conservation (closed system)

$$q \frac{d\phi(r)}{dr} dr = l CV_0 dV$$
$$dV = \frac{q}{lCV_0} \frac{d\phi(r)}{dr} dr$$

Integrate ...

 $= -\frac{q}{2\pi\epsilon_0 l} \ln\left(\frac{a+r'}{a}\right)$

Integrate ...

$$dV = \frac{q}{lCV_0} \frac{d\phi(r)}{dr} dr \qquad \text{with} \quad \phi(r) = -\frac{CV_0}{2\pi\epsilon_0} \ln \frac{r}{a}$$

Total induced voltage

for electrons:

$$V^{-} = -\frac{q}{lCV_0} \int_{a+r'}^{a} \frac{d\phi(r)}{dr} dr = -\frac{q}{lCV_0} \left[\frac{CV_0}{2\pi\epsilon_0} \ln\left(\frac{a+r'}{a}\right) \right]$$

Total induced voltage for ions

r': point where the multiplication starts

s:

$$V^{+} = \frac{q}{lCV_0} \int_{a+r'}^{b} \frac{d\phi(r)}{dr} dr = -\frac{q}{2\pi\epsilon_0 l} \ln\left(\frac{b}{a+r'}\right)$$

$$V = V^{+} + V^{-} = -\frac{q}{lC}$$

with $C = \frac{2\pi\epsilon_{0}}{\ln b/a}$

Ratio of V⁺ and V⁻:

$$V^{-}/V^{+} = \frac{\ln(a+r'/a)}{\ln(b/a+r')}$$
With typical numerical values:
 $a = 10 \ \mu\text{m}, \ b = 10 \ \text{mm}, \ r' = 1 \ \mu\text{m}$
 $V^{-}/V^{+} = 0.013$

Signal almost entirely due to ions ... 19

cylinder length: l

Voltage time dependence:

$$V(t) = -\frac{q}{4\pi\epsilon_0 l} \ln\left(1 + \frac{\mu C V_0}{\pi\epsilon_0 a^2} t\right) = -\frac{q}{4\pi\epsilon_0 l} \ln\left(1 + \frac{t}{t_0}\right) \qquad \text{with:} \qquad t_0 = \frac{\pi\epsilon_0 a^2}{\mu C V_0}$$

Total drift time T:

with: $t_0 = \pi \epsilon_0 a^2 / \mu C V_0$

$$r(T) = b$$

$$b = \left(a^2 + \frac{\mu C V_0}{\pi \epsilon_0}T\right)^{1/2} \qquad T = \frac{\pi \epsilon_0}{\mu C V_0} \left(b^2 - a^2\right) = t_0 \left(\frac{b^2}{a^2} - 1\right)$$

Calculation V($a/b \cdot T$):

$$V(a/b \cdot T) = -\frac{q}{4\pi\epsilon_0 l} \ln\left(1 + \frac{a/b \cdot T}{t_0}\right) = -\frac{q}{4\pi\epsilon_0 l} \ln\left(1 + a/b\left(\frac{b^2}{a^2} - 1\right)\right)$$
$$= -\frac{q}{4\pi\epsilon_0 l} \ln\left(\frac{b}{a}\right) = -\frac{1}{2}\frac{q}{lC}$$
with $C = \frac{2\pi\epsilon_0}{\ln b/a}$

Typically $a/b \approx 10^{-3}$, i.e. after 10^{-3} T already half of the signal voltage is reached ... Choice of suitable RC-circuit allows short (differentiated) signals ... [Capacity per unit length]

Brief recap

So far:

- we have defined the ionization and avalanche multiplication process
- we have the design of a single wire proportional counter
- with it we can measure the pulse signal from ionization

A proportional counter does not yet give a position measurement of the incident particle ...

multi-wire proportional chamber

construction details of the original design of Charpak's multi-wire chambers G. Charpak Nobel price (1992)

Multi-wire proportional chamber (MWPC)

MWPC – field distribution

Electric field lines and equipotentials

Small wire displacements reduce field quality ...

Need high mechanical precision both for geometry and wire tension ... [electrostatics and gravitation; wire sag]

MWPC – signal

Timing resolution:

Depends on location of penetration for fast response: OR of all channels ... [typical: $\sigma_t = 10 \text{ ns}$]

Signal generation:

Electrons drift to closest wire Gas amplification near wire → avalanche Signal generation due to electrons and mainly slow ions

Multi-wire proportional chamber

- 2-dim.: use 2 MWPCs with different orientation
- 3-dim.: several layers of such X-Y-MWPC combinations [tracking]

2D - MWPC

substantial functionality improvement due to cathode strips/pads ...

Aging in wire chambers

Avalanche formation can be considered as micro plasma discharge.

Consequences:

Formation of radicals i.e. molecule fragments Polymerisation yields long chains of molecules Polymers may be attached to the electrodes Reduction of gas amplification

Important: Avoid unnecessary contamination ...

Harmful are ...

. . . .

Halogens or halogen compounds Silicon compounds Carbonates, halocarbons Polymers Oil, fat ...

Can wires be avoided?

Micro-strip gas chambers (MSGC)

Can one avoid wires?

Anode realized via microstructures on dielectrics ...

Simple construction (today) Enhanced stability & flexibility Improved rate capabilities

First MSGCs developed in 1990ies ...

Problems: charging of isolation structure [→ time-dependent gain; sparks, anode destruction] Schematics of MSGC field lines

high field directly above anode ions drift only 100 $\mu\text{m};$ yields low dead time \dots

MGSC – technical solutions

MGSCs prone to aging problems ... Solution: intermediate grid ...

e.g.: Micromegas GEM detectors [Sauli, 1997]

Micromegas:

Fine cathode mesh collects ions still fast; no wires ...

GEM (Gas Electron Multiplier):

Thin insulating kapton foil coated with metal film ...

Contains chemically produced holes [100-200 μ m]

Electrons are guided by high electric drift field of GEMs ...

Avalanche production ...

Electrons drift to anode GEM collects ions

Drift chamber

Alternative way to obtain spatial information: measure the electrons drift time

- time measurement started by an external (fast) detector, i.e. scintillator counter
- electrons drift to the anode (sense wire), in the filed created by the cathodes

x

- the electron arrival at the anode stops the time measurement

$$= \int_0^{t_D} v_D \, dt$$

Drift chamber – field formation

Adjustable field multi-wire drift chamber: introduction of voltage divider via cathode wire planes

very few (or only one) anode wires space point resolution limited by mechanical accuracy [for large chambers: $\sigma \approx 200 \ \mu m$] But: hit density needs to be low.

Tracking detector

Tracking at fixed target experiments: Multi-layer MWPC or drift chamber

Tracking at collider experiments: cylindrical drift chamber

... more about tracking in the next lecture

H1 - Cylindrical drift chamber

Cylindrical Drift Chamber

[H1 Experiment]

Number of wires: ~ 15000 Total force from wire tension: ~ 6 t

Time projection chamber

Electronic 'bubble chamber' Full 3D reconstruction ...

- xy : from wires and pads of MWPC
- z : from drift time measurement

Momentum measurement ...

space point measurement plus B field ...

Energy measurement ... via dE/dx ...

TPC setup:

(mostly) cylindrical detector central HV cathode MWPCs at end-caps of cylinder B∥to E → Lorentz angle = 0

Charge transport :

Electrons drift to end-caps Drift distance several meters Continuous sampling of induced charges in MWPC

Time projection chamber

Advantages:

Complete track within one detector yields good momentum resolution

Relative few, short wires (MWPC only)

Good particle ID via dE/dx

Drift parallel to B suppresses transverse diffusion by factors 10 to 100

Challenges:

Long drift time; limited rate capability [attachment, diffusion ...]

Large volume [precision]

Large voltages [discharges]

Large data volume ...

Extreme load at high luminosity; gating grid opened for triggered events only ...

Typical resolution:

z: mm; x: 150 - 300 µm; y: mm dE/dx: 5 - 10%

TPC – technical solution

Difficulty: space charge effects due to slow moving ions change effective E-field in drift region

Important: most ions come from amplification region

Solution: Invention of gating grid; ions drift towards grid ... [Also: shielding grid to avoid sense wire disturbance when switching]

Requires external trigger to switch gating grid ...

ALICE - TPC

ALICE - TPC

Length: 5 meter Radius: 2.5 meter Gas volume: 88 m³

Total drift time: 92 µs High voltage: 100 kV

End-caps detectors: 32 m² Readout pads: 557568

159 samples radially 1000 samples in time

Gas: Ne/CO₂/N₂ (90-10-5) Low diffusion (cold gas)

Magnetic field: 0.5 T

Pad size: 5x7.5 mm² (inner) 6x15 mm² (outer)

Temperature control: 0.1 K [also resistors ...]

