HelmholtzZentrum münchen

German Research Center for Environmental Health

Munich-Centre for Advanced Photonics (MAP)

Introduction into brillant X-ray sources for medical imaging

From X-ray tubes over large-scale synchrotrons to compact, laser-driven sources

Ultimate goal: dose/contrast agent reduction

> disadvantages of x-ray tubes:

- polychromatic spektrum → low CNR/Dose
- focal spot size → limited spatial resolution

(especially for magnification)

> advantages of undulator sources:

quasi-monochromatic (few %) → high CNR/dose

- laminar beam geometry → scatter reduction
- low divergence → high spatial resolution
- tunable energy

high brilliance

emitted spectrum:

Synchrotron

First constructed for high energy physics experiments since 1970's: dedicated synchrotron sources for condensed matter physics/chemistry/biology (esp. protein crystallography).

Figure of merit for many applications:

brilliance = $\frac{\text{photons / sec}}{(mrad)^2 (mm^2 \text{ source area})(0.1\% \text{ band width})}$ $\uparrow 1 \qquad \uparrow 2 \qquad \qquad \uparrow 3$

- 1 angular divergence of Xray beam.
- 2 size of electron beam
- 3 determined by monochromator

Brilliance of synchrotron sources up to $\sim 10^{10}$ larger than X-ray tube, mostly due to much smaller angular divergence. This is important because many experiments use small samples (e.g. protein crystals!) that can use only a tiny fraction of radiation emitted by tube.

opening angle of synchrotron radiation: 1/gamma

► Wiggler

 $N \sim 30$ segments of alternating B-field \Rightarrow intensity enhancement by factor $\sim N$ compared to bending magnet.

Undulator

Similar to wiggler, but E-fields of wave fronts emitted in each segment are coherent, interfere constructively \Rightarrow intensity enhancement by factor $\sim N^2$.

distance between pole pieces of undulator

Time for electron to get from A to B: $\Delta t = \frac{\lambda_u}{v}$

By this time, wave front emitted at A has progressed a distance $c\Delta t$. Condition for constructive interference:

$$\begin{split} c\Delta t - \lambda_u &= n\lambda \\ \Rightarrow \left(\frac{c}{v} - 1\right) \lambda_u = \left(\frac{1}{\beta} - 1\right) \lambda_u \approx \frac{\lambda_u}{2\gamma^2} = n\lambda \\ \Rightarrow \text{ largest intensity at wavelengths } \lambda &= \frac{\lambda_u}{2\gamma^2} \frac{1}{n} \sim \frac{1\dot{A}}{n} \quad (\text{mostly use first harmonic, } n = 1) \end{split}$$

Laser Thomson scattering equivalent to undulator radiation

$$\begin{split} \lambda = & \frac{\lambda_u}{2\gamma^2} - \begin{array}{c} \lambda_u & \rightarrow \lambda_{laser} \\ & 2\gamma^2 & 2\gamma^2 \rightarrow 4\gamma^2 \text{ as laser moves with v=-c, while undulator is} \\ & \text{at rest} \end{split}$$

typically: about 40 MeV electrons \rightarrow 50 keV photons

Source: <u>http://www.esrf.fr</u> For a list of the beamlines, see <u>http://www.esrf.fr/beamline/</u>

The "brightness" of a light source:

X-ray sources, ICFA Seminar, SNAL, October 2008, L. Rivkin, PSI & EPFL

Third Generation Light Sources in Operation

Monte Carlo simulation of mammography

- high resolution voxemodels of breast
- created from CT-scans of anatomical breast specimens
- voxel size: 60 x 60 x 60 μm³
- segmentation in different tissues:
 - adipose
 - glandular
 - skin

- using brilliant undulator radiation: beam geometry, spectral angular flux,...
- pulsed scanning geometry
- simulation of absorption and scattering processes with Geant4-Software-Toolkit

Simulation of mammography

0.2 mGy average glandular dose at ~10¹¹ photons

optimal X-ray energy

→ requires tunable source

M. Fuchs et al., Laser-driven soft-X-ray undulator source, Nature Physics 5, 826 (2009)

okay up to 25 keV, above one needs Thomson scattering

basic principle of any accelerator

one needs an electric field...

...charged particles are then accelerated

accelerators can be quite large...

