
Documentation of the DeepAnalysis code

Vasiliy Morgunov

edited by: Erika Garutti

November 30, 2007

1 Introduction

The hadron shower DeepAnalysis code has been developed with the propose of studying
the composition of hadronic showers utilizing data from highly granular calorimeter
prototypes. It is an ad hoc type of clustering algorithm based on analog information
of energy deposited in a hadronic shower tuned for the identification of the shower
components. This multi-purposes algorithm make a decomposition of hadronic shower
(set of calorimeter hits) into a number of clusters with different physical properties.
As a warning from the author, this code is not tuned for showers separation and it
is strongly geometry dependent. It is a FORTRAN code written at the beginning of
2003 with aim of design of hadron calorimeter prototype. The DeepAnalysis was first
applied in a series of studies all available in http://www.desy.de/∼morgunov
“Test-Beam Prototype Volume Coverage and Clusters in It” (2003)
“Tile Size Issues for HCAL Prototype” (2003)
“Prototype Geometry influence on Reconstruction Quality” (2003)
“Attempt to estimate the prediction power of the calorimeter properties following from
different hadron models in the simulation programs; and the systematic errors of such
predictions” “Two Particle Separation with Tile HCAL” (2004) by A. Raspereza.
Recently algorithm was rewritten in C++ by A. Zhelezov. The rewriting was done in
two steps: first the code was rewritten first in C to reproduce the exact output numbers
for each event with the computer accuracy, then the C version was rewritten in C++
to get a compact code.

2 The code concept

The main idea of the DeepAnalysis code is to separate a hadronic shower in four
contributions: track-like particles (TRK), hadronic fraction (HAD), electromagnetic
fraction (EM) and neutrons (NEU). The DeepAnalysis proceeds sequentially through

1

http://www.desy.de/~morgunov


the three basic steps: hit classification, hit clustering and joining of clusters. The hits
are classified according to their energy into three types: TRK, HAD and EM like.
Fig. 1 a) shows the energy spectrum of single hits and an example of energy cuts to
identify the types. These energy boundaries are parameters of the algorithm, normally
set to 0.5-1.7 mips (TRK-like), 1.7-3.5 mips (HAD-like) and larger than 3.5 mips (EM-
like). An additional hit class is introduced for NEU like hits, which is not based on
energy information and it will be discussed after clustering. After hit classification
a two-dimensional clustering is performed in each calorimeter layer. Subsequently,
clusters in consecutive layers are joined in a three-dimensional procedure using their
topological properties. The TRK like clusters are classified as having large eccentricity
and low hit density. The HAD like clusters have relatively small eccentricity and low
hit density. The EM like clusters have high hit density and large eccentricity. The
EM and the HAD clusters have to be connected by TRK clusters. The remaining
isolated hits not assigned during this procedure are regarded as NEU like hits. These
hits are by definition disconnected from the shower tree but they get assigned to the
shower if their distance from the shower axis is less than a defined parameter. See
Marius Groll thesis (http://www-flc.desy.de/flc/internal/paper/thesis.2007.groll.pdf)
thesis for a first example of application of this code to calorimeter data.

Figure 1: Hit class classification by hit energy.

2

http://www-flc.desy.de/flc/internal/paper/thesis.2007.groll.pdf


3 Input / Output

The DeepAnalysis code accepts hits as input and returns clusters as output. The code
requires from the main user program a list of hits initially tagged to start the recon-
struction. Hits are given to the program using the mothod:

deep analysis.add hit(x,y,z,ampl gev,ampl mip,layer,type);

where x,y,z are the space coordinates of the hit1; ampl gev (ampl mip) is the
energy amplitude of one hit expressed in GeV (number of MIPs); and type is a pre-
assigned hit type. The definition of hit type is part of the code user. An example
is shown where three threshold are used to separate noise, track-like, hadron-like and
electromagnetic-like hits.

if(ampl m < threshold 0)
continue;
else if(ampl m < threshold 1)
type = DeepAnalysis::TRK;
else if(ampl m < threshold 2)
type = DeepAnalysis::HAD;
else
type = DeepAnalysis::EM;

The thresholds are one set of the important parameters to tune in the code. An
example of thresholds used by the code author is given:

// These numbers in MIPs are the color boundary definition
// The colors are defined as 0 < C1 < C2 < C3 < C4
// COLOR = no color – just a noise
float threshold 0 = 0.50;
// Hit color = 3 = green −−− > Track like
float threshold 1 = 2.0;
// Hit color = 4 = blue −−− > Hadronic like
//float threshold 2 = 4.0;
float threshold 2 = 4.5;
// Hit color = 2 = red −−− > Electromagmetic like

1The DeepAnalisys coordinate system is centered at the center of hte ECAL front plate. The

positive x-axis pointing to the right, the positive y-axis pointing up and the z-axis closing the right-

handed coordinate system points upstream the beam direction.

3



It has been checked that the code is very sensitive to the choice of threshold 0
since this threshold directly influences the total number of noise hits which decreases
esponentially with threshold. Important is also the choice of threshold 2 since (how it
will become clear in the following) the code starts to claster from the electromagnetic
core. The distinction between track-like and hadron-like hits has very little influence
on the code output and threshold 1 can be also set equal to threshold 2 with no strong
impact.
Note these thresholds are in principle energy dependent and the user could consider
implementing variable thresholds as a function of the beam energy.

Once the input hits are given the DeepAnalysis code is called and the statistics of
the output clusters can be check using a print method for each cluster type.

deep analysis.reconstruction();
deep analysis.color clusters print stat(DeepAnalysis::EM);
deep analysis.color clusters print stat(DeepAnalysis::TRK);
deep analysis.color clusters print stat(DeepAnalysis::HAD);
deep analysis.color clusters print stat(DeepAnalysis::NEUTR);

The method deep analysis.color clusters print stat() returns the energy sum of all
clusters, the total number of hits and number of clusters for a given type. The same
information can also be stored into variables using the method:

deep analysis.color clusters stat(type,Energy,hits,clusters);

4 The code parameters

The DeepAnalysis works with a handful of parameters which optimize the clustering for
a specific detector geometry. The list reported below has been tuned for the CALICE
AHCAL prototype detector (http://www-flc.desy.de/hcal/tilehcal/). Using the code
for any other detector geometry would require full retuning of all parameters (including
the energy thresholds reported in the previous section).
Detector()
sampling = 30.0;
cell size = 30.0;
ext cell size = 30.0;
neut thresh = 0.6;
normal thresh = 0.5;
elips trans to catch= 1.5;
elips forw to catch = 1.5;

4



elips back to catch = 1.0;
ecc trk hadr sel = 0.3;
a delta = 0.01;
sph cut = 0.05; // about 3 degree
cut 3d em = 31.0;
cut 3d had = 81.0;
join factor = 1.0;
zoom dist = 200.0;
The meaning of each parameter is explained in the following when addressing the code
in details.

5 The DeepAnalysis code

The main routine of the DeepAnalysis code is reported here below:

//———————————————————————–
void reconstruction() // Main routine
//———————————————————————–
// cout<<” NO CLUSTER JOINING ”<<endl;
all hits− >calc stat();
detector.init(all hits− >r g.min);
event move();

// cout<<” —————– EM like ————————-”<<endl;
cluster finder 3d(*(kind[EM]),false);
cluster join(true);
em shower find();
reassignment small clusters(TRK);

// cout<<” —————– TRK like ————————-”<<endl;
cluster finder 3d(*(kind[TRK]),false);
cluster join(false);
reassignment small clusters(HAD);

// cout<<” —————– HAD like ————————-”<<endl;
cluster finder 3d(*(kind[HAD]),true);
// cluster join(false);
// low e clean();
event move back();
for(RSIterator<Cluster> ci(clusters);ci.next();)
ci− >finalize(*this);

5



The code is organized in three main blocks dealing with EM, TRK and HAD-like
clusters in sequence. The order of the various steps is relevant and should not be mixed.
Before and after the block for cluster handling the event is rotated fro and back away
from the z-axis. The rotation matrix used is:
z = x+zoom dist

x = z

y = -y

This rotation is needed to avoid the singularity between Θ=0o and Θ=90o, when
working in polar coordinates.
To follow a brief description of the main DeepAnalisys routines in the order of call.

5.0.1 cluster finder 3d

The 3D cluster finder proceeds in steps, first the detector volume is divided in spherical
shells. Each shell is treated as a 2D plane in spherical coordinates and a 2D cluster
finder is applied. Then 2D clusters on various shells are merged to form 3D objects.
The definition of shells is made according to the sketch in Fig. 2 and depends on three

r1=r0+sampling

sampling

a_delta

cell_size

r0 = zoom_dist

Figure 2: Sketch of geometry definition of shells in 3D clustering procedure.

user parameters. The parameter zoom dist [mm] defines the radius of the first shell.
Ideally the shell center should be adjusted according to the position where the shower
starts. This would require setting zoom dist event by event. A simpler but less precise
solution is to fix the center of the first shell about 200 mm in front of the first detector
layer. The parameter sampling [mm] defines the distance between shells. cell size

6



defines the granularity of a grid on the 2D plane and should be set similar to the detec-
tor granularity. The parameter a delta is defined as the ratio cell size/zoom dist

= tan(Θ) ∼ Θ.
Once shells are defined a 2D clustering is applied which works in the (Θ, φ) plane. A 2D
histogram is filled with binning r ∼ a delta. On the histogram projection (see Fig. 3)

ϕ

ϕ
Θ Θ1 n

1

n

r

log A

2
1

3

Figure 3: Sketch of 2D clustering procedure.

a peak finder based on bin content amplitude is used to identify the center of a cluster
(1) and associate the histogram bins direct neighbors to the peak (2) till a second peak
(3) is found with no direct neighbor to cluster 1. This procedure continues till overlap is
found between two clusters. The common histogram bins are randomly assigned to one
of the two clusters with a weighted probability. Note that changing a delta will change
the number of bins in the 2D histogram and therefore will impact on the number of 2D
clusters found. The radius of action of the peak finder is steered by the sph cut pa-
rameter. Increasing the value of sph cut will decrease the number of 2D clusters found.

After the 2D clustering is compleated on each shell the routine cluster find is
called. The distances in 3D between the clusters are calculated, then starting from
the closest clusters a chain is formed between all 2D clusters with distance d < R join

(see Fig 4). At the end of one chain a second is started from the next minimum distance
between the remaining 2D clusters. The parameter R join = dr * join factor can
be tuned by the user changing the value of join factor. A larger join factor value
will merge more 2D clusters to one chain.
For reference, the value of dr is calculated for each 2D cluster, give the layer (or shell

number) where the 2D cluster is found and its radius, as: dr = radius
layer

(

1 + 1

layer

)

.

5.0.2 cluster join

This routine is used to join nearby 3D clusters with distance smaller that the cut 3d em

(cut 3d had) for EM (TRK or HAD) like clusters. For analysis of hadronic showers it

7



id

d > R_join

Figure 4: Sketch of 2D cluster chaining procedure in 3D.

is suggested to use cluster join only to join EM like clusters, while the HAD option
can be useful in muon analysis to avoid the splitting of a muon track. In this routine
clusters with one or two hits in the surroundings of an EM cluster are merged. This
helps collect the tails of electromagnetic shower around the high energy core.

5.0.3 em shower find

For EM showers another step is necessary to include all hits on the tails of the
shower. For this purpose an ellipsoid is built around the EM shower core, which is
defined by three parameters: a transverse radius and a backward and forward ra-
dius (to account for the forward boost of the shower). The three radii of the el-
lipsoid are then increased by the values of the parameters elips trans to catch,

elips forw to catch, elips back to catch.
The tuning of this three parameters is essential to control the electromagnetic fraction
identified by the code. The best method for tuning is to compare in MC true π0 energy
in a hadronic shower with EM reconstructed energy. This tuning has been performed
using the CALICE AHCAL prototype detector. The correlation between true π0 en-
ergy and reconstructed EM like energy in a 10 GeV pion shower is shown in Fig. 5
from the studies performed by Vasiliy Morgunov. More details on these studies can be
found in: http://www.desy.de/∼morgunov/talks articles/Full Simulations.pdf.

5.0.4 reassignment small clusters

All hits left unassigned to the type under consideration after the previous steps are
reassigned to the next type considered. The logic chain of the DeepAnalysis code is:
find EM like clusters, EM hits not assigned are reassigned as TRK like hits. Find TRK
clusters, TRK hits not assigned are reassigned as HAD like hits. Find HAD clusters,
HAD hits not assigned in all the previous steps are tagged NEU like hits. NEU hits
remain isolated, no NEU cluster exists. This last step of NEU assigning is performed
in the routine finalize which has to be called at the end of the 3D clustering.

8



Figure 5: Result of the tuning of DeepAnalysis parameters for π0 energy reconstruction

in a hadronic shower.

5.0.5 finalize

Finalize acts on all collections of clusters identified in the 3D reconstruction. It uses
the cluster eccentricity cut given by the parameter ecc trk hadr sel to change TRK
like to HAD like clusters if the number of hits in the cluster is larger than 2 and the
eccentricity smaller than the cut. Clusters with number of hits less then 3 are destroyed
and reassigned as NEU like hits.

After this last step the reconstruction is completed and the cluster classes can be
retrieved for analysis.

9


	1 Introduction
	2 The code concept
	3 Input / Output
	4 The code parameters
	5 The DeepAnalysis code
	5.0.1 cluster_finder_3d
	5.0.2 cluster_join
	5.0.3 em_shower_find
	5.0.4 reassignment_small_clusters
	5.0.5 finalize



