Einführung in die Teilchenphysik, SS 2016 Übungsblatt 7

Frank Tackmann

Abgabe: Freitag, 10.06.2016, zu Beginn der Vorlesung

Deep-inelastic scattering (DIS) (15 Punkte)

In dieser Übung leiten wir den Wirkungsquerschnitt für den DIS Prozess $e^-(k)p^+(P) \rightarrow e^-(k')X$ her, wobei X den nicht näher spezifierten hadronischen Endzustand bezeichnet. Setzen Sie für die gesamte Übung die Massen von Elektron, Proton und Quarks auf Null. Beachten Sie, dass die einlaufenden e^- und p^+ nicht die gleichen Impulse haben, d.h., die e^-p^+ Kollision findet nicht im Schwerpunktsystem statt.

- a) (2 Punkte) Zeichen Sie dass relevante Feynman Diagram für den zugrundeliegenden partonischen Prozess $e^-(k)q(\xi P) \to e^-(k')q(p)$.
- b) (8 Punkte) Wir definieren die partonischen Mandelstam Variablen als

$$s = (\xi P + k)^2$$
, $t = (k - k')^2$, $u = (k - p)^2$, (1)

sowie die kinematische Variable

$$x = \frac{-t}{2P \cdot (k+k')} \,. \tag{2}$$

Leiten Sie den führenden partonischen Wirkungsquerschnitt differentiell in t und x für den partonischen Prozess in a) her:

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}t\,\mathrm{d}x} = \hbar^2 c^2 \, 2\pi\alpha_{\mathrm{em}}^2 Q_q^2 \, \frac{1}{t^2} \left[1 + \left(1 + \frac{t}{2\xi P \cdot k} \right)^2 \right] \delta(\xi - x) \,. \tag{3}$$

Hinweis: Sie können frühere Resultate wiederverwenden, insbesondere:

- Die Formel für den differentiellen Wirkungsquerschnitt $d\sigma/d\Omega$ für $2 \to 2$ Streuung. (Beachten Sie, dass Ω im Schwerpunktsystem definiert war, was in unserem Fall jetzt dem partonischen e^-q Schwerpunktsystem entspricht.)
- Um das spin-summierte quadrierte Matrixelement $\sum_{\text{spins}} |\mathcal{M}(e^-q \to e^-q)|^2$ zu erhalten:
 - Recyclen Sie unser Ergebnis für $e^+e^- \to \mu^+\mu^-$ mittels "crossing symmetry" wie folgt: Zunächst, um Verwirrungen zu vermeiden, nennen Sie die Mandelstam Vairablen für diesen Prozess $\tilde{s}, \, \tilde{t}, \, \tilde{u}$. Das spin-summierte quadrierte Matrixelement hängt nur von den Impulsen die durch das Feynman-Diagram laufen ab. Sie können daher das Resultat für DIS $e^-q \to e^-q$ aus dem von $e^+e^- \to \mu^+\mu^-$ erhalten, indem Sie die ein- und auslaufenden Impulse entsprechend zuordnen. (Auf diese Weise können Sie z.B. zeigen, dass $\tilde{s}=t,$ usw.)
 - Alternativ, können Sie auch das Ergebnis direkt aus dem Feynman Diagramm berechnen. Die Rechnung läuft komplett analog zu unserer Rechnugn für $e^+e^- \rightarrow \mu^+\mu^-$ in der Vorlesung.
- c) (3 Punkte) Benutzen Sie das Resultat für den partonischen Wirkungsquerschnitt in Gl. (3) zusammen mit dem Faktorisierungstheorem um den hadronischen Wirkungsquerschnitt $d\sigma/dtdx(e^-p^+\to e^-X)$ herzuleiten.
- d) (2 Punkte) Wie kann man Sensitivität auf die gluon PDF in DIS bekommen? (Zeichnen Sie ein relevantes Feynman Diagramm.)