SUSY Searches at the LHC

Wolfgang Ehrenfeld (DESY)

Göttingen, 29. Februar 2012

Outline

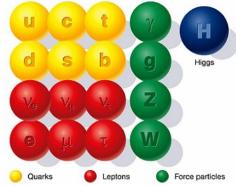
Introduction

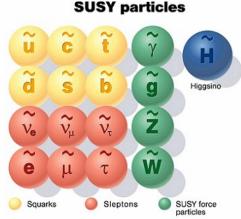
> LHC and ATLAS/CMS

Final states

- Jets and missing E_T
- Third generation
- Multi-leptons
- Photons

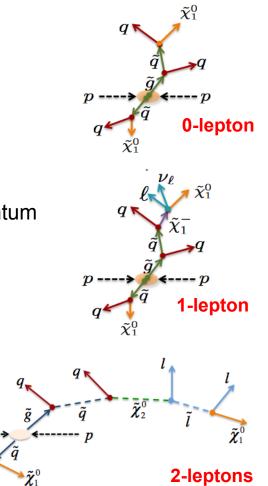
Summary




Supersymmetry (SUSY)

One of the most popular extensions of the SM

- SUSY postulates "superpartners" to each SM particles (same quantum numbers, but spin differs by ½)
- SUSY must be broken
- R-parity: R=(-1)^{3(B-L)+2s} If R-parity is conserved, SUSY particles are pair produced and the lightest one (LSP) is stable
- > Why is SUSY popular? It answers many open questions at once:
 - Allows unification of gauge couplings
 - Provides a solution to the hierarchy problem: the fermion/boson contribution to the Higgs mass exactly cancel
 - If R-parity is conserved the LSP is stable and is a dark matter candidate


Search Strategies for SUSY

- > Assume R-parity conservation for the moment
- > At the LHC sparticles are pair produced
 - dominantly squarks and gluinos via the strong interaction
 - they decay via cascades into the stable LSP (neutralino or gravitino)
- > common signature:
 - multiple, high energetic jets and transverse missing momentum
 - distinguish final states by additional particles

zero, one, two, .. leptons (e, μ), two photons, ... b-jets if 3^{rd} generation squarks are lighter than other generation squarks

incomplete event reconstruction due to LSP

- no mass peak
 → SUSY is in the tails of the distributions
- SM backgrounds (top, W/Z+jets, QCD) are taken from/verified in control regions

SUSY Analysis in Detail

- 1. Event selection cuts and definition of signal region:
 - Cut on a set of variables that can discriminate between signal and background jets, missing E_T, leptons, b-jets, …
 - Coherent with the choice of trigger to ensure high trigger efficiency
- 2. Background determination:
 - QCD and fake backgrounds: estimate from data
 - top, W/Z + jets: estimate from data when possible or with transfer factors using background-enhanced control regions:

$$V_{SR}^{est,Bkg} = \frac{N_{SR}^{MC}}{N_{CR}^{MC}} (N_{CR}^{data} - N_{CR}^{MC,others})$$

- Smaller irreducible backgrounds: using Monte Carlo simulation
- 3. Estimate all uncertainties:
 - Experimental uncertainties: jet energy scale calibration, b-tagging efficiency, …
 - Theoretical uncertainties: renormalisation and factorisation scales, PDF, …
- 4. Look into the signal region: Any excess in data? If not, derive exclusion limits
- 5. Interpretation

A Word on Models

Model independent interpretation: The main experimental result is the limit on the number of signal events in the signal region and the limit on the visible cross section

Model specific interpretation:

mSUGRA/CMSSM:

- m₀: common scalar mass
- m_{1/2}: common gaugino mass
- A₀: common trilinear coupling
- tan β: ratio of Higgs vacuum expectation values
- sign(μ): sign of SUSY Higgs potential parameter

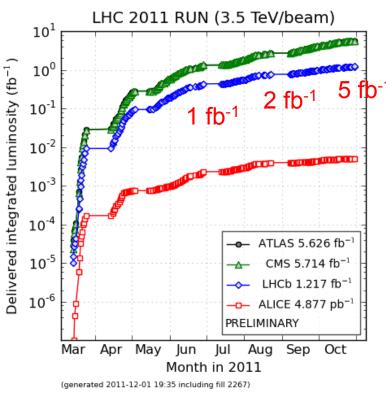
GMSB:

- Λ: SUSY breaking scale
- M_{mess}: messenger mass scale
- N₅: number of messenger fields
- **tan** β: ratio of Higgs vacuum expectation values
- **sign**(μ): sign of SUSY Higgs potential parameter
- C_{grav}: ratio of the gravitino mass to its value at the breaking scale Λ

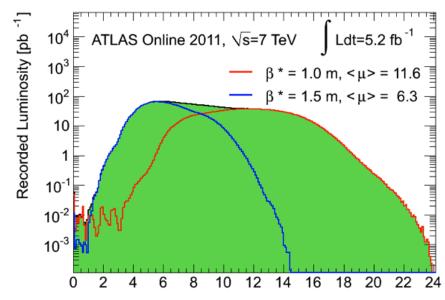
Reduce number of free parameters and predict mass spectrum

Simplified models

reduced particle spectrum: test different mass combinations

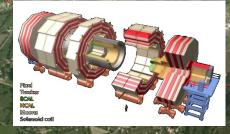


Large Hadron Collider (LHC)


> √s = 7 TeV pp

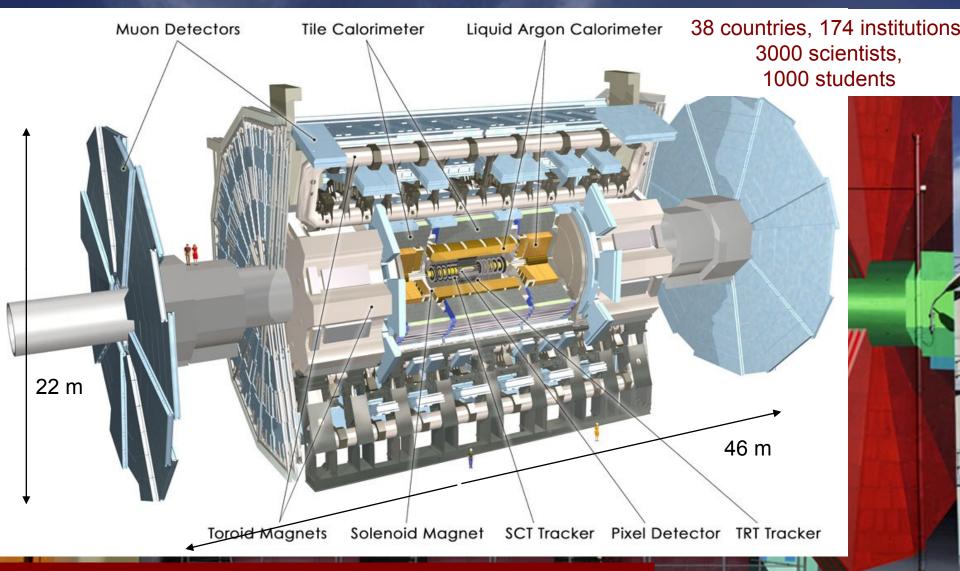
> Outstanding 2011 Performance

- ~ 3.5 × 10³³ cm⁻²s⁻¹ peak lumi
- ~ 5.6 fb⁻¹ delivered



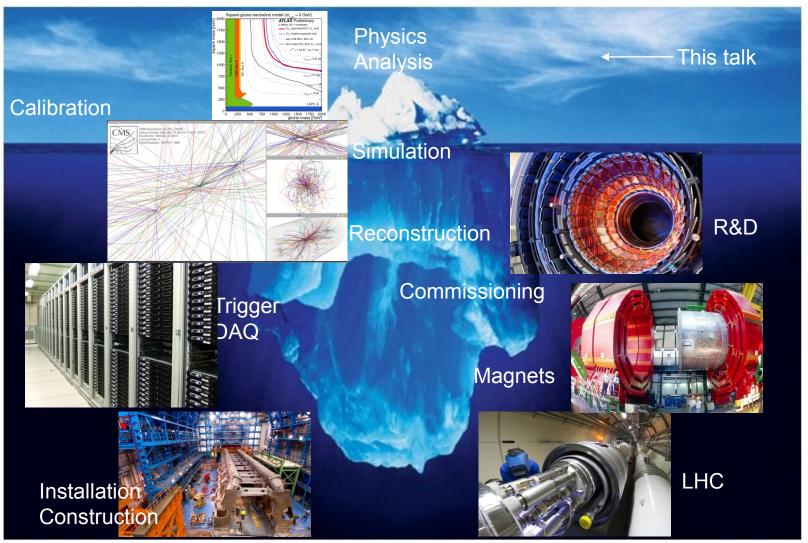
- > Bunch spacing 50 ns
- > ~ 12 pp collisions / crossing (avg.)

Mean Number of Interactions per Crossing


CMS

Total weight 14000 t Overall diameter 15 m Overall length 28.7 m

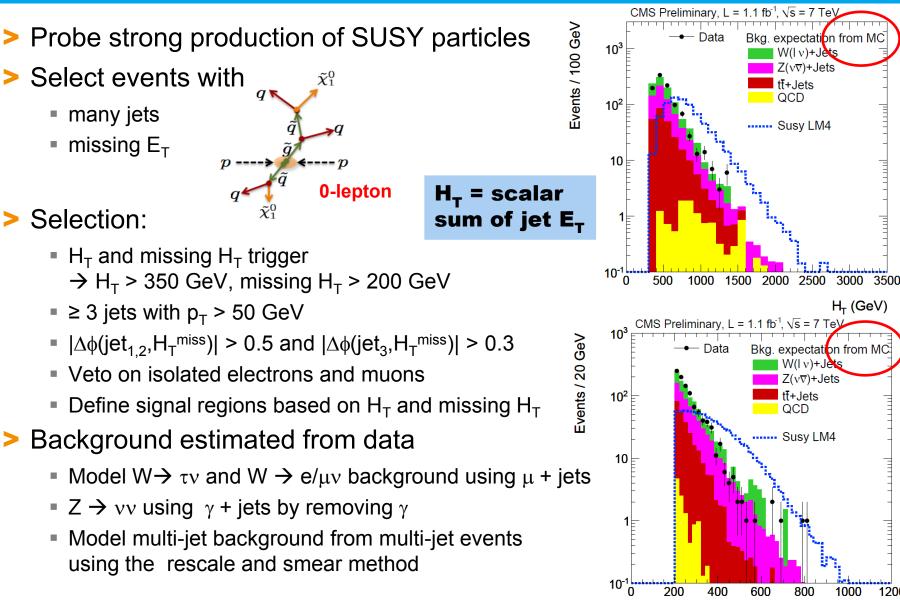
39 Countries, 169 Institutes, 3170 scientists and engineers including 800 students


Emphasis on excellent resolution (energy, momentum, mass) of electrons, photons, muons

Emphasis on excellent jet and missing- E_{τ} (MET) resolution, particle identification, and standalone muon reconstruction

Acknowledgements

Courtesy of Henri Bachacou



Jets and Missing E_T

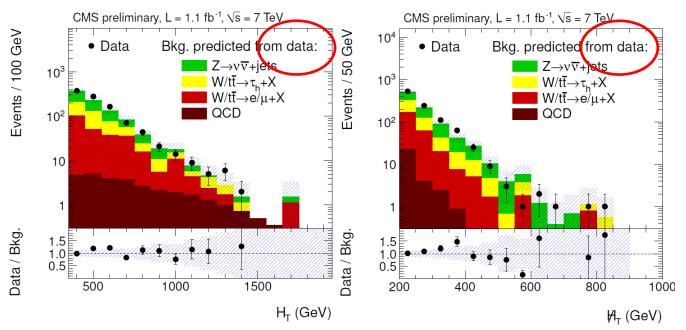
Jets + Missing E_T

CMS PAS-SUS-11-004

H/_h (GeV)

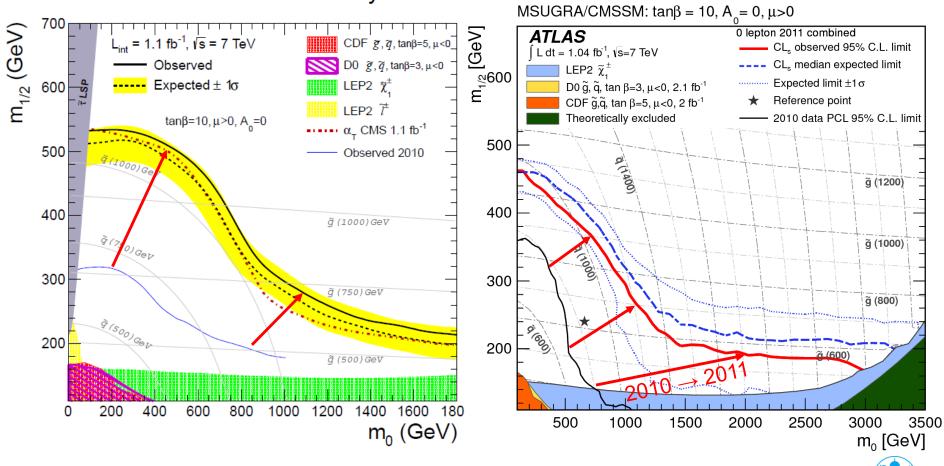
1000

1200


H_T (GeV)

Jets + Missing E_T: Results

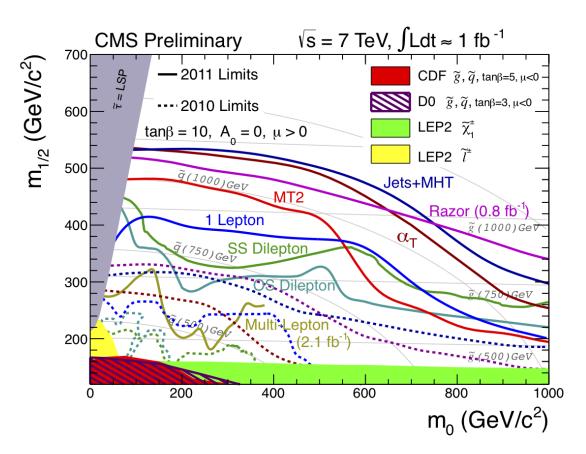
Four signal regions:


Method	Baseline H _T > 350 GeV and H _T ^{miss} > 200 GeV	Medium H _T > 500 GeV and H _T ^{miss} > 350 GeV	High H _T H _T > 800 GeV and H _T ^{miss} > 200 GeV	$\begin{array}{l} \textbf{High H_T^{miss}} \\ \textbf{H_T} > 800 \ \text{GeV and} \\ \textbf{H_T^{miss}} > 500 \ \text{GeV} \end{array}$
$Z \rightarrow vv$ from γ +jets	376.3 ± 12.3 ± 79.2	42.6 ± 4.4 ± 8.9	24.9 ± 3.5 ± 5.2	2.4±1.1 ± 0.5
tt/W \rightarrow e,µ+X	243.5 ± 19.8 ^{+30.0} - _{30.9}	12.7 ± 3.3 ± 1.5	22.5 ± 6.7 ^{+3.0} -3.1	$0.8 \pm 0.8 \pm 0.1$
tt/W $\rightarrow \tau_{hadr}$ +X	263 ±8 ± 7.4	17 ± 2 ± 0.7	18 ± 2 ± 0.5	0.73 ± 0.73 ± 0.04
QCD	30.9 ±35.2 ^{+16.6}	1.3 ±1.3 ^{+0.6} of	13.5 ±4.1 ^{+7.3}	0.09 ±0.31 ^{+0.05} 004
Total background	927.5 ±103.1	73.9 ±11.9	79.4 ±12.2	4.6 ±1.5
Observed in data	986	78	70	3

Data well described by background estimate from data

Interpretation in mSUGRA/CMSSM

- > Excluding $m_0 < 600$ GeV for $m_{1/2} < 500$ GeV
- Excluding squark masses < ~1 TeV and gluino masses < ~600 GeV</p>



CMS Preliminary

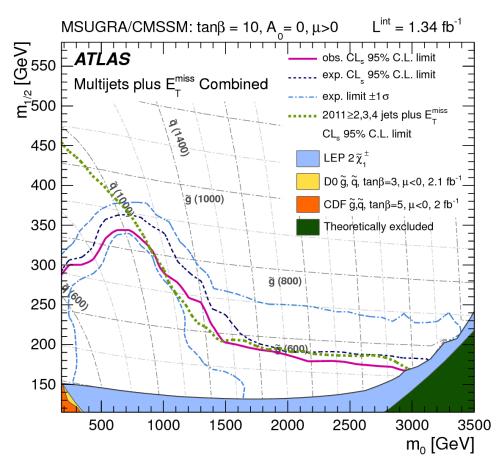
Wolfgang Ehrenfeld | SUSY Searches at the LHC | 29.2.0212 | Page 16

Interpretation in mSUGRA/CMSSM

> CMS

> Other methods:

α_T
 [PRL 107, 221804 (2011)]


- m_{T2}
 [CMS PAS-SUS-11-005]
- Razor [CMS PAS-SUS-11-008]

Interpretation in mSUGRA/CMSSM

> ATLAS

- Multi-jet plus missing E_T [JHEP 11 (2011) 99]
- > Select events with \geq 6 jets

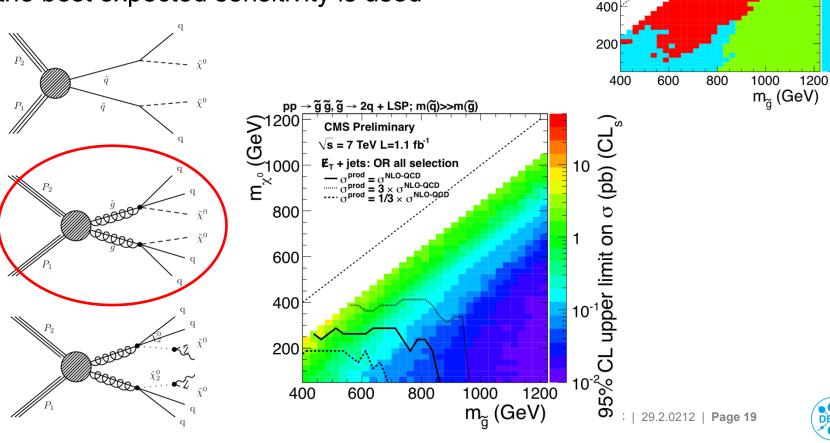
Interpretation using Simplified Models

CMS PAS-SUS-11-003

 $\tilde{g} \tilde{g}, \tilde{g} \rightarrow 2q + LSP; m(\tilde{q}) >> m(\tilde{g})$

CMS Preliminary

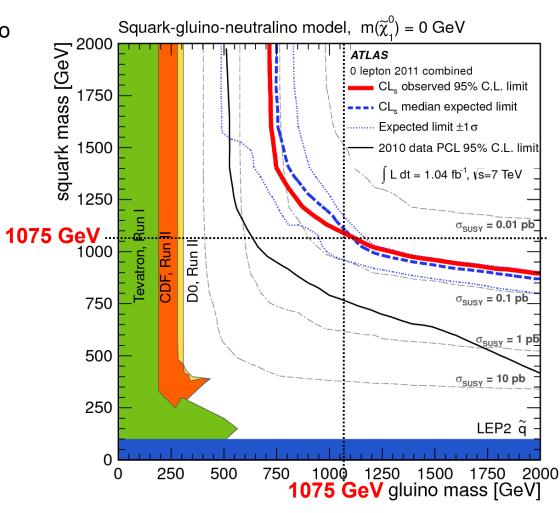
3=H₋ ≥ 500 ⊮


 $\sqrt{s} = 7 \text{ TeV L}=1.1 \text{ fb}^{-1}$ 1=H_T ≥ 800 M_T ≥ 200 2=H_T ≥ 800 M₋ ≥ 500

() 1000 1000 E[×]

800

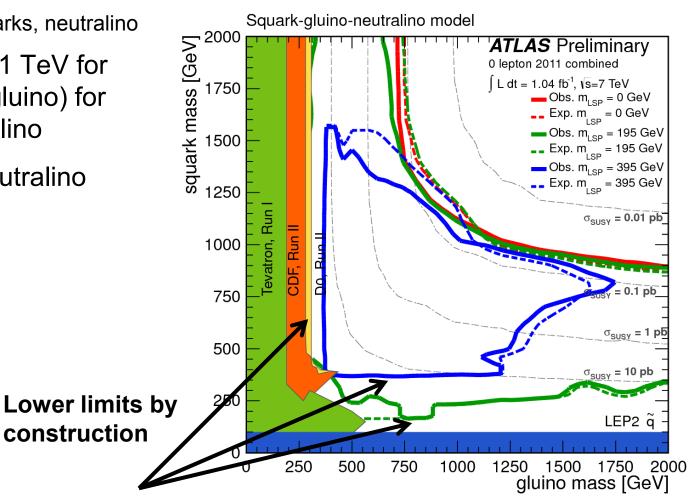
600


- Reduce the particle content and couplings to produce a given topological signature
- > Give limit on production cross section
- For each signal point, the signal region with the best expected sensitivity is used

Interpretation using Simplified Models

> Simplified model:

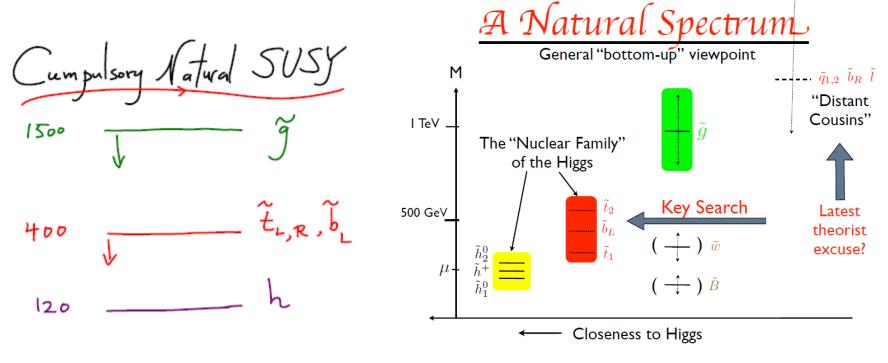
- gluino, light squarks, neutralino
- Exclude up to ~ 1 TeV for m(squark) = m(gluino) for massless neutralino



Interpretation using Simplified Models

> Simplified model:

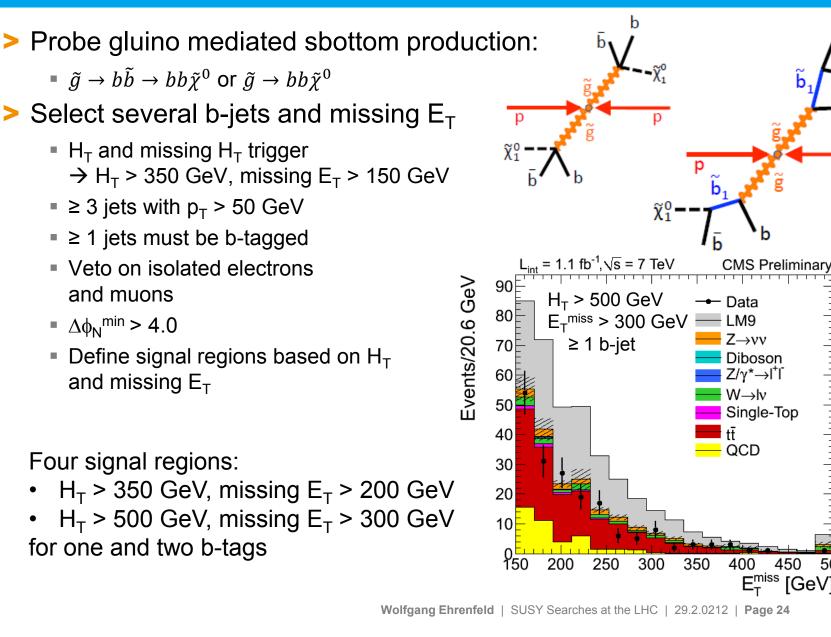
- gluino, light squarks, neutralino
- Exclude up to ~ 1 TeV for m(squark) = m(gluino) for massless neutralino
- > Test different neutralino masses
 - 195 GeV
 - 395 GeV



Third Generation

Third Generation

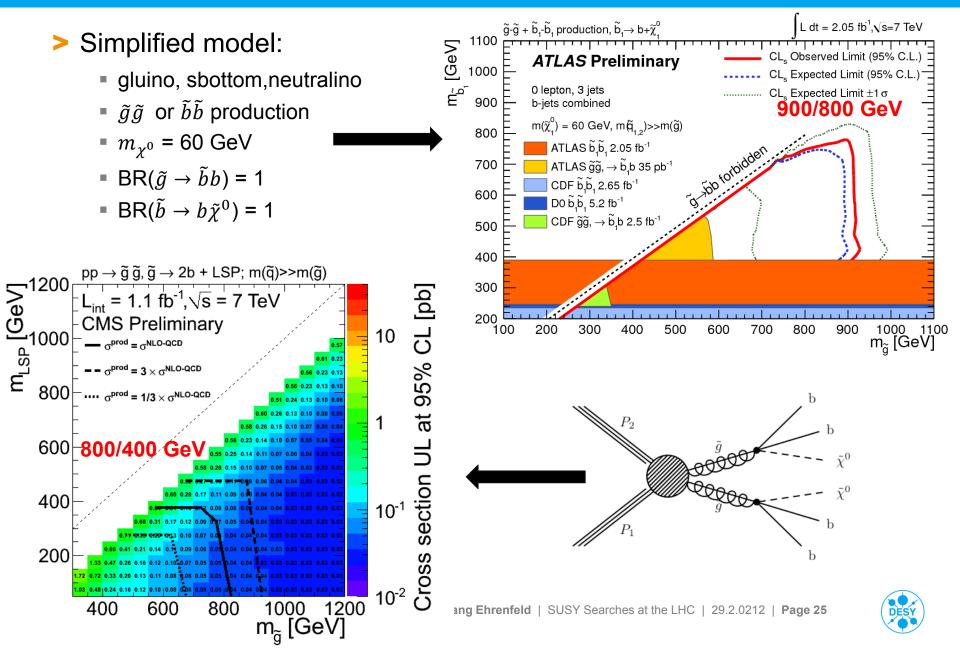
Can the third generation of SUSY particles be light if the first two are heavy?


Nima Arkani-Hamed, 31. October 2011

Lawrence Hall, 21. October 2011

Gluino Mediated Sbottom Production

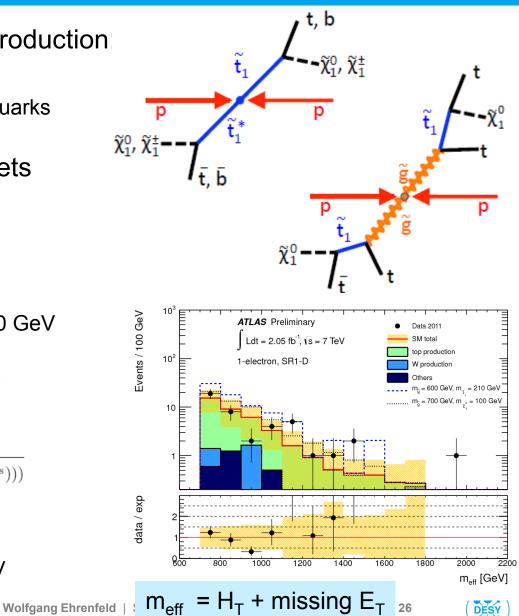
CMS PAS-SUS-11-006

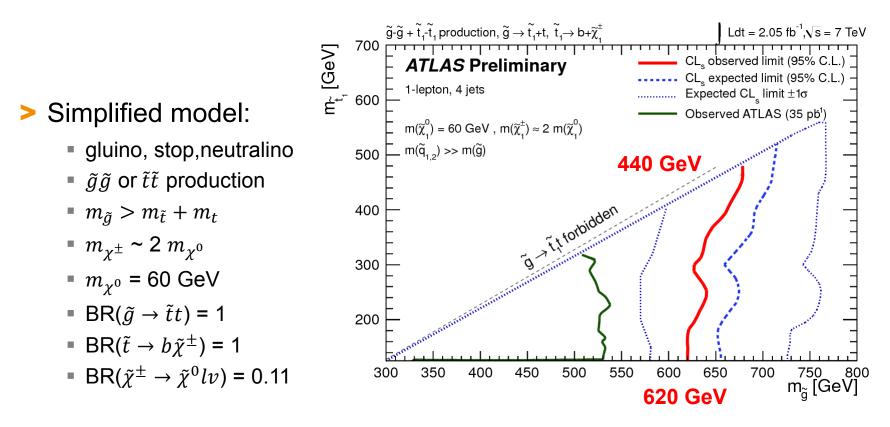


500

Interpretation

ATLAS-CONF-2012-003 CMS PAS-SUS-11-006

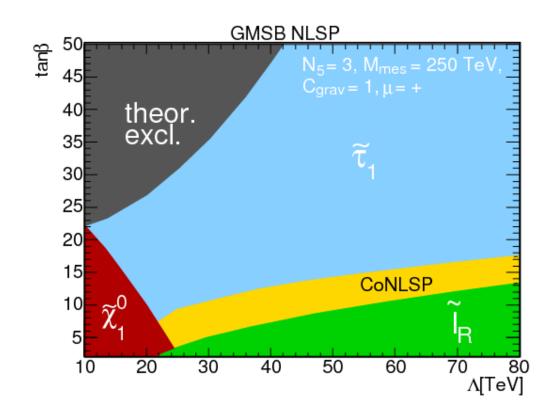

Stop Production


ATLAS-CONF-2012-003

- Probe gluino mediated stop production
 - $\tilde{g} \to \tilde{t}t \to tt \tilde{\chi}^0$ or $\tilde{t} \to t \tilde{\chi}^0 / b \tilde{\chi}^\pm$
 - Events with several top/bottom quarks and neutralinos
- Select one lepton, several b-jets and missing E_T
 - Single lepton trigger
 -> e/μ with p_T(e,μ) > 25,20 GeV
 - Veto on additional leptons (e/µ)
 - At least four jets with p_T(jet₁) > 60 GeV and p_T(jet_{2,3,4}) > 50 GeV
 - One of the jets must be b-tagged
 - Missing E_T > 80 GeV
 - m_T > 100 GeV

$$m_{\rm T} = \sqrt{2 \cdot p_{\rm T}^{\ell} \cdot E_{\rm T}^{\rm miss} \cdot (1 - \cos(\Delta \phi(\vec{\ell}, \vec{E}_{\rm T}^{\rm miss})))}$$

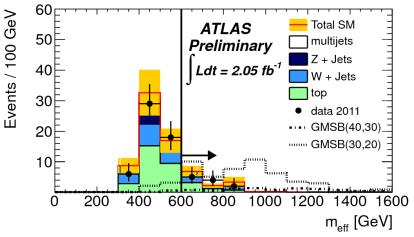
- > Two signal regions:
 - m_{eff} > 700
 - m_{eff} > 700, missing E_T > 200 GeV


Gluino masses of 620 GeV excluded for stop masses up to ~440 GeV

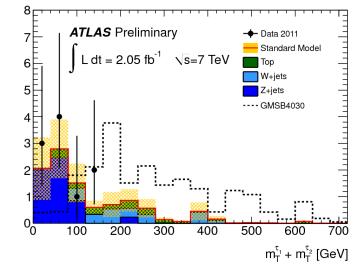
Third Generation: Tau Leptons

> Gauge Mediated SUSY Breaking (GMSB)

- the very light gravitino is the LSP
- event topology defined by next to lightest sparticle (NLSP)
- For N₅ = 3 stau and slepton NLSP enriched
- $\tilde{\tau} \rightarrow \tau \tilde{G}, \, \tilde{\chi}^0 \rightarrow \tau \tilde{\tau}$


Third Generation: Tau Leptons

ATLAS-CONF-2012-002 ATLAS-CONF-2012-005

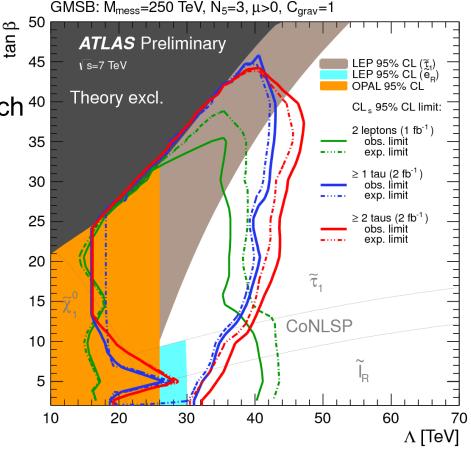

- Squark/gluino mediated stau production in GMSB
- Common selection:
 - Jet + missing E_T trigger → p_T (jet₁) > 130 GeV, missing E_T > 130 GeV

Events / 40 GeV

- Veto on electrons and muons
- At least two jets with p_T(jet₂) > 30 GeV

- > Analysis with at least one tau:
 - ≥ 1 tight tau lepton with $p_T > 20 \text{ GeV}$
 - Missing E_T/m_{eff} > 0.25
 - m_{eff} > 600 GeV
 - m_T(τ) > 110 GeV

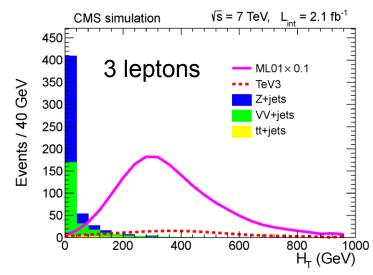
- > Analysis with at least two tau:
 - ≥ 2 loose tau leptons with $p_T > 20$ GeV
 - m_{eff} > 700 GeV
 - $m_T(\tau_1) + m_T(\tau_2) > 80 \text{ GeV}$

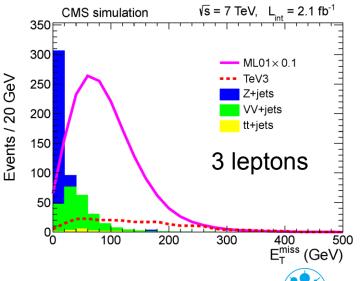


Search for Tau Leptons - Interpretation

- Results interpreted in a minimal GMSB model with: M_{mess} = 250 TeV, N₅ = 3, μ > 0, C_{grav} = 1
- > ATLAS dilepton opposite-sign search⁴⁰
 - ATLAS-CONF-2011-156 (1 fb⁻¹)
- 2 τ analysis:
 - Best exclusion set for Λ = 47 TeV and tan β = 37
 - Independent of tan β,
 Λ < 32 TeV is excluded
- > 1 τ analysis:
 - Best exclusion set for Λ = 40 TeV and tan β = 44
 - Independent of tan β,
 Λ < 31 TeV is excluded

	SM background	Observed	$\sigma_{\rm vis}$ [fb]	
1 au analysis	13.2 ± 4.2	11	< 4.0	
2 au analysis	5.3 ± 2.6	3	< 2.7	



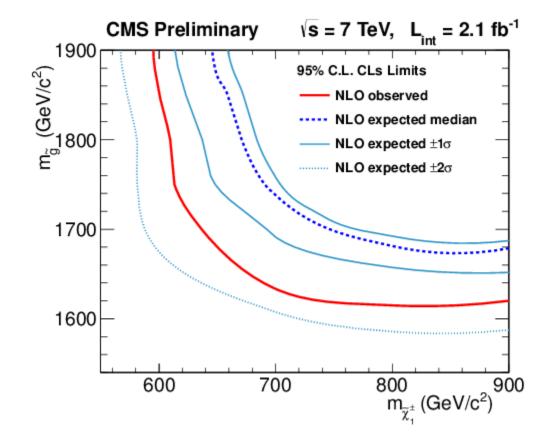

Multi-Leptons

Multi-Leptons

- Consider three and four lepton final states
 - Electrons
 - Muons
 - Hadronically decaying tau leptons
- Background suppression by requiring
 - H_T > 200 GeV
 - Missing E_T > 50
- 52 channels in total
- Background estimate:
 - From MC, checked in control regions
 - Misidentified leptons
 - Irreducible background from WZ/ZZ production
 - Internal photon conversion: $Z \rightarrow II\gamma$ with $\gamma \rightarrow ee/\mu\mu$

CMS PAS-SUS-11-013

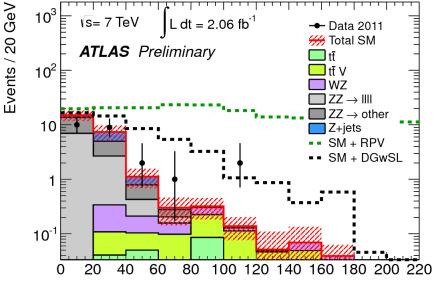
CMS: 2 fb⁻¹ – missing $E_T > 50$ GeV


Channel	$\ell \ell + Jet$	$\ell\ell + \gamma$	tī	VV	Total SM	Data	Signal
$OS(\ell\ell)e$	0.33 ± 0.08	0.42 ± 0.42	1.5 ± 0.8	3.3±1.3	6.0±1.7	10	76±19
$OS(\ell\ell)\mu$	0.42 ± 0.10	0.17 ± 0.17	2.2 ± 1.1	4.3 ± 1.7	7.5 ± 2.1	14	106 ± 21
$OS(\ell\ell)\tau$	$28.4{\pm}4.4$	$0.35 {\pm} 0.35$	29±15	4.5 ± 1.7	63±16	71	202 ± 30
$\ell\ell'\tau$	24.6 ± 6.0	1.7 ± 1.7	38±19	7.5 ± 2.9	73 ± 20	88	29 ± 10
$SS(\ell\ell)\ell'$	$0.45 {\pm} 0.08$	$0.35 {\pm} 0.35$	2.3 ± 1.1	$0.49 {\pm} 0.18$	4.3 ± 1.3	6	9.1 ± 5.4
$SS(\ell\ell)\tau$	3.9 ± 1.5	$0.48 {\pm} 0.48$	1.7 ± 0.9	3.4±1.3	9.9±2.3	21	◆ 4.0±4.0
$\ell \tau \tau$	96±18	NA	12.3 ± 6.2	1.7 ± 0.6	110 ± 19	88	24.0 ± 9.1
$\sum \ell(\ell/\tau)(\ell/\tau)$	154 ± 28	3.1±3.1	87 ± 44	25.3 ± 9.7	273 ± 53	298	450 ± 49
lll	0.0000 ± 0.0006	< 0.0002	< 0.006	0.016±0.005	0.016 ± 0.006	1	14.6±7.4
$\ell\ell\ell au$	0.00 ± 0.07	< 0.007	< 0.07	$0.14{\pm}0.04$	0.23 ± 0.11	0	14.8 ± 7.7
$\ell\ell\tau\tau$	0.34 ± 0.33	< 0.005	0.27 ± 0.13	$0.14{\pm}0.04$	0.89 ± 0.40	0	7.8 ± 5.6
$\sum \ell \ell (\ell/\tau) (\ell/\tau)$	$0.34{\pm}0.34$	0.00 ± 0.00	0.27 ± 0.13	0.29 ± 0.08	1.14 ± 0.42	1	37±12

Some channels show excess in data

Gauge-mediated theory with split messengers (GMSM)

- Gravitino LSP
- *ĝ* / *q̃* decay down to *χ̃*⁰
- $\tilde{\chi}^0 \rightarrow \tilde{l}^{\pm} l^{\mp}$ and $\tilde{l}^{\pm} \rightarrow \tilde{G} l^{\pm}$
- Excess in data can be clearly seen in observed limit


CMS PAS-SUS-11-013

4 Leptons

ATLAS-CONF-2012-001

Selection

- Four leptons (e,µ)
- Veto on low mass Drell-Yan pairs (m_{II} < 20 GeV)
- Missing E_T > 50 GeV
- Two signal regions based on Z-boson veto (|m_{II} –m_Z| < 10 GeV)

 E_T^{miss} [GeV]

SR1	All	eeee	еееµ	ееµµ	еµµµ	μμμμ
ΣSM	1.7±0.9	0.6±0.8	0.24±0.57	0.5±0.6	0.32±0.55	0.08±0.57
Data	4	0	1	2	0	1

Z-boson veto:

Σ SM	0.7±0.8	0.35±0.83	0.05±0.57	0.13±0.57	0.12±0.55	0.005±0.567
Data	0	0	0	0	0	0

Photons

Final States with Photons and Missing E_T

Sauge Mediated SUSY Breaking (GMSB)

- The very light gravitino is the LSP
- Event topology defined by next to lightest sparticle (NLSP)
- Large parameter space has neutralino NLSP:

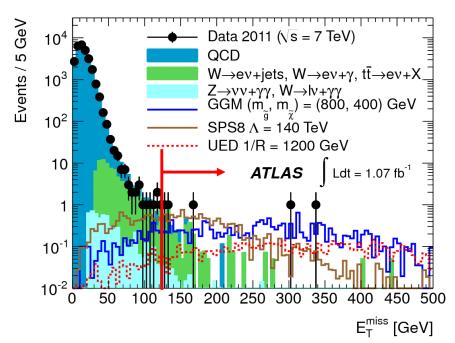
If bino like \rightarrow decay into photon and gravitino

If zino like \rightarrow decay into Z and gravitino

If wino like \rightarrow chargino is the NLSP, but mass degenerated with neutralino

> Final states with one/two photons

> ATLAS: [arXiv:1111.4116]

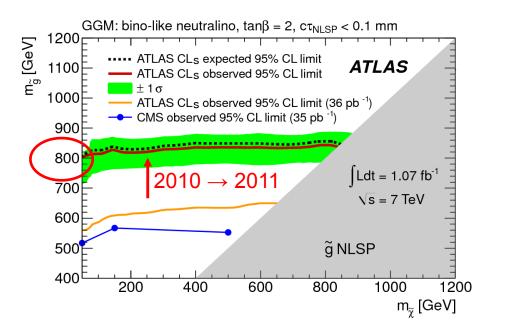

Diphoton + missing E_T

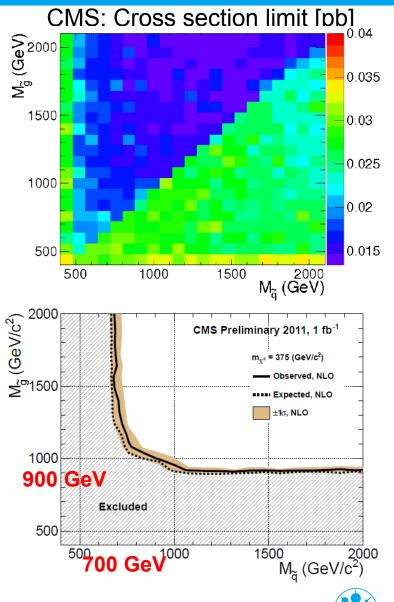
> CMS: [PAS SUS-11-009]

- Diphoton + jet + missing E_T
- Photon + 3 jets + missing E_T

Background estimated from data:

- Fakes from jets
- Fakes from electrons

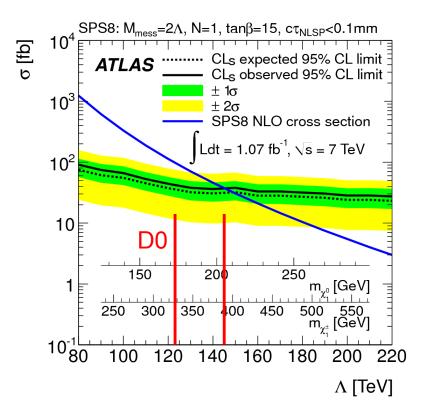

2 Photons + Missing E_T: Interpretation

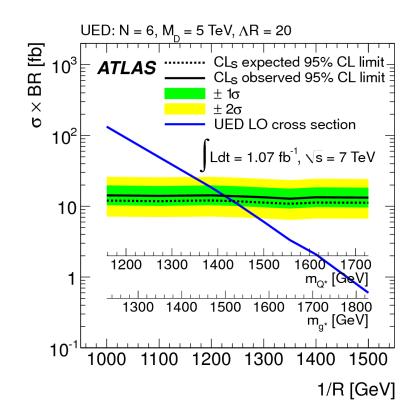

Seneral Gauge Mediation (GGM)

simplified model with three/four sparticles:

Gluino/squarks for production Bino-like neutralino as NLSP Gravitino

Exclusion limits on m(gluino) ~ 800-900 GeV

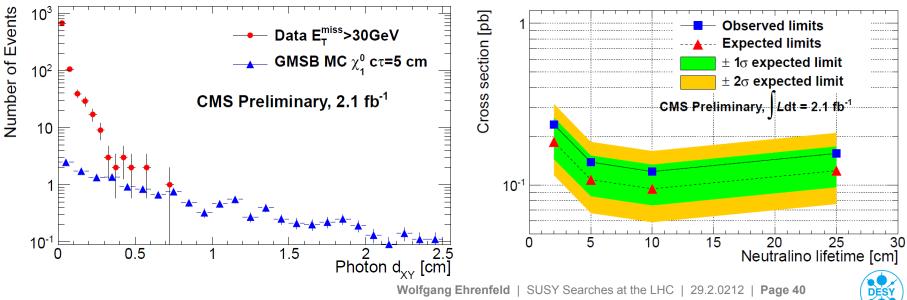


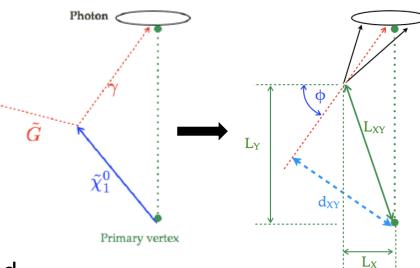

Diphoton + Missing E_T: Interpretation

arXiv:1111.4116

- > minimal GMSB / SPS8 slope
 - full mass spectrum
 - A < 145 TeV excluded</p>

- > Universal Extra Dimension (UED)
 - mass spectrum similar to SUSY
 - 1/R < 1224 GeV excluded</p>

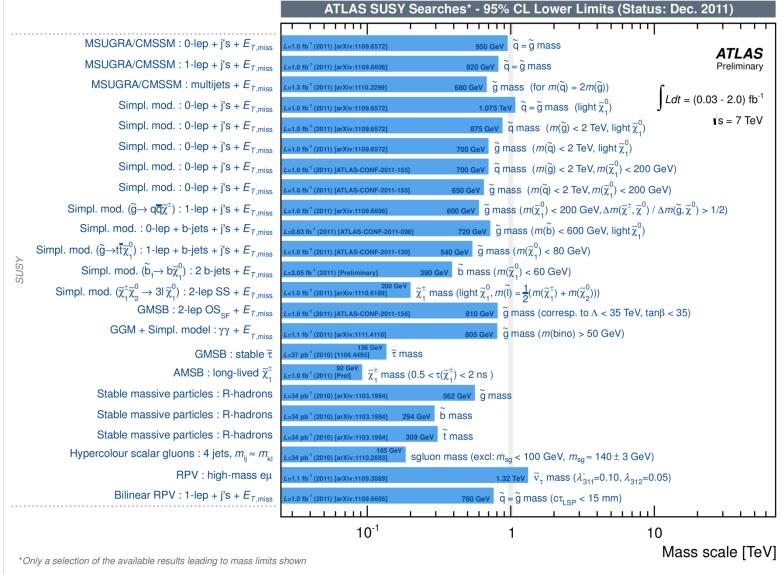



Long-Lived Neutralinos → Non-Pointing Photons

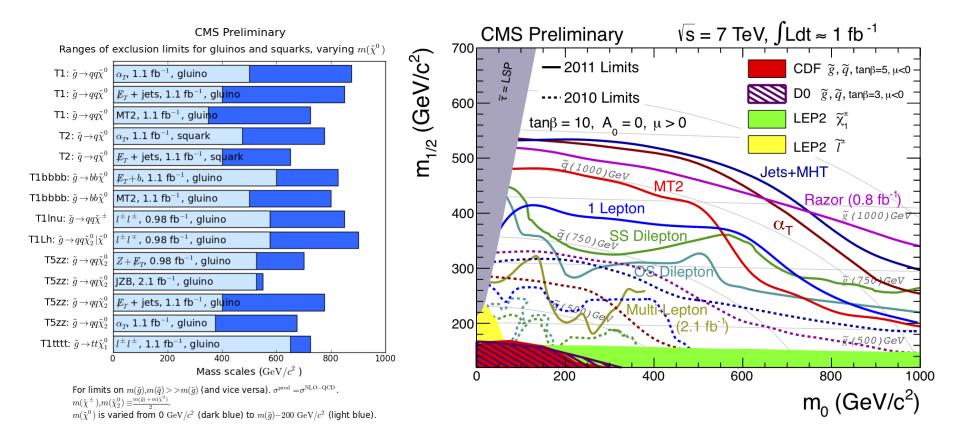
CMS PAS-EXO-11-067

- The neutralino can decay late
- Selection:
 - ≥ 2 isolated photons with $E_T > 45/30$ GeV
 - \geq 2 jets with p_T > 80/40 GeV
 - Require converted photons to reconstruct (displaced) vertex
 - Missing E_T > 30 GeV
 - d_{xy} > 6 mm

> Use sidebands to estimate background



Summary



Summary of ATLAS SUSY Searches

Summary of CMS SUSY Searches

Conclusion and Outlook

- > ATLAS and CMS have produced an impressive number of papers/conference notes using the 2011 data
- In the channels searched so far, no significant excess above the Standard Model was found
- > SUSY was not "just around the corner"
- Limits have surpassed those from Tevatron/LEP
- Besides MSUGRA/CMSSM also gauge mediated and simplified models considered
- Many updates and new analysis with the full 2011 data expected in the next weeks/months
- > Both experiments will search for SUSY in 8 TeV collisions (15 fb⁻¹)

