The Software Trigger Concept for the TESLA Detector

G. Eckerlin DESY / Hamburg

Outline

Introduction Boundary Conditions Trigger/DAQ Concept

Introduction

TESLA will be a high luminosity collider aiming for precession physics

- large data volume due to
 - high background rates
 - high event rates from some $\gamma\gamma$ reactions
 - high detector granularity
- rare physics processes may be hidden in a large data rate need deadtime free data acquisition and event selection need full event information for high efficient event selection need highly flexible for event selection

Long lifetime of the experiment

scalability, maintainability, modularity is essential !

Boundary Conditions TESLA operation mode

2820 bunches grouped in trains at a rate of 5 Hz Very long time between bunch trains: 199 ms time between bunches: 337 ns bunch trains length : 950µs

Boundary Conditions The Detector

Large hermetic detector with high granularity

- 5 layer vertex (CCD) (8•10⁸ channels)
- main tracking (TPC) (1.5•10⁶ channels)
- ECAL (SiW) (32•10⁶ channels)
- HCAL, IRON,
- total 8.5•10⁸ channels

Trigger and DAQ Concept

- read and store data of complete bunch train into pipeline
 - no hardware trigger interrupt
 - 1 ms active front-end pipeline
- perform zero suppression and/or data compression
 - manageable data volumes online
- event read out between trains (200ms)
 - may need multi train buffer and readout in parallel
- apply software selection online
 - full event data information of complete train available store classified events according to (physics) needs

Trigger and DAQ Concept Overview

ADC, multiplexing, hit detection

read and buffer event in Readout Unit

build subdetector data in parallel

pre-processing in Subdet. Event Builders

build full event into Event Finder Unit

full train processing event finder

permanent storage

To be adressed....

Hardware (this session)

- where to put the boundary subsystem DAQ / central DAQ
- decide on the interface
- when start design of the common parts for the DAQ ?

Software (simulation session)

- need simulation of realistic event and background
- design algorithms and selection strategies
- develop a (common) on-line and off-line computing model

event filter strategies, analysis and processing, data access