Quantum Chromodynamics

3.4.1 Introduction

Strong-interaction measurements at TESLA will form an important component of the $\gamma\gamma$ interactions will be delivered free by Nature, and a dedicated $\gamma\gamma$ collider is an additional option, allowing detailed measurements of the relatively poorly understood physics programme. The 500-800 GeV collider offers the possibility of testing QCD in the experimentally clean, theoretically tractable e⁺e⁻ environment. In addition, photon structure. The benchmark physics main topics are:

Precise determination of the strong coupling α_s.

• Measurement of the Q^2 evolution of α_s , (searches for new coloured particles) and constraints on the GUT scale.

Measurements of the tt(g) system)

Measurement of the total two-photon interactions.

Measurement of the unpolarised and polarised photon structure.

Testing of BFKL dynamics.

3.4.2 Precise determination of α_s

- 3.4.2.1 Event Shape Observables
- 3.4.2.2 The tt System (SHORT, → top Section)
- 3.4.2.3 A High-luminosity Run at the Z^0 Resonance

3.4.2.1 Event Shape Observables

Introduction

Detector systematic errors

Event selection and backgrounds

Hadronisation uncertainties

Theoretical ucnertainties

(M_₹) LINEAR COLLIDER α_{A} MEASUREMENT

1. Event Shape Observables

- Studied at Snowmass 96 (Burrows et al., SLAC-PUB-7371)
- · ECFA/DESY Workshop: O. Biebel, N. America: 8. Schumm
- Statistics:

 \geq 50k $q\overline{q}$ events \Rightarrow

 $\Delta \alpha_s \leq 0.001$

Detector systematics:

currently $\Delta \alpha_s \sim 0.002$

Excellent tracking + calorimetry $\Rightarrow \Delta \alpha_s \sim 0.001$

Hadronisation uncertainties ~ 1/Q

At
$$Q = 500 \text{ GeV} \Rightarrow$$

 $\Delta \alpha_s < \mathbf{0.001}$

Limiting precision:

Higher-order pQCD contributions:

 $\Delta \alpha_s \sim 0.006$

⇒ NNLO calculation needed

3.4.2.2 The $t\bar{t}$ System

Introduction

 σ_{tt} near threshold

 σ_{tt} above threshold

 $t\bar{t}g$ events

Currently: not competitive

for X= determination

=> SHORT discussion only

(MZ) LINEAR COLLIDER \(\alpha \) MEASUREMENT

2. Top Quark Observables

• $\sigma_{t\bar{t}}$ near threshold (Peralta)

new NNLO calculations ⇒

reduced correlation $\alpha_s \leftrightarrow M_t$

THEORY UNCERTAINTY

±0.012

• $\sigma_{t\bar{t}}$ above threshold (Bernreuther)

PRELIMINARY study of NLO calculations

$$\sqrt{s} = 400 \text{ GeV}$$
:

 $\Delta \alpha_s = 0.005$

(theory limiting)

$$\sqrt{s} \geq 500 \text{ GeV}$$
:

 $\Delta \alpha_s = 0.012$

(exp. syst. limiting)

• $e^+e^- \rightarrow t\tilde{t} g$ (Brandenburg)

en passant running mass Mt (Q)

3.4.2.3 A High-luminosity Run at the Z^0 Resonance

Introduction

$$\Gamma_Z^{had}/\Gamma_Z^{lept}$$
 (see also EW section)

$$\Gamma_{\tau}^{had}/\Gamma_{\tau}^{lept}$$

En passant:

Running b mass

QCD colour factor measurement

Rich programme of "all the rest"

(M_₹) LINEAR COLLIDER α_↑MEASUREMENT

- 2. Lower-energy running offers new possibilities:
- Z^0 decay widths: $\Gamma_Z^{had}/\Gamma_Z^{lept}$ calculated at NNLO current precision, 16M Z^0 at LEP: $\Delta\alpha_s=0.003$

1000M $Z^0 \Rightarrow \Delta \alpha_s = 0.0016$ BEWARE: event selection (Mönig et al.),

theory uncertainties? NEW: 0.0009

Theoretically safe ground.

• τ decay widths: $\Gamma_{\tau}^{had}/\Gamma_{\tau}^{lept}$ calculated at NNLO current exp. precision, LEP+CLEO: $\Delta\alpha_s=0.001$ theoretical uncertainties \Rightarrow $\Delta\alpha_s=0.006$

3.4.2 Q2 Evolution of as

(New coloured particles)

Extrapolation to GUT scale

⇒ Low-energy data points at TESLA would be desirable

ete QCD 3.4.4 OTHER

Bellin on was wide to detects the good about land, a physician de ga

- Limits on anomalous strong top-quark couplings
 - ⇒ modify gluon energy in ttg events xref to Top
- Measurement of Γ_t using tt̄g events (Orr)
 - $\Rightarrow \Gamma_t$ affects degree of soft-gluon coherence
- Polarisation-based asymmetries in qqg events:

$$\vec{P_e} \cdot \vec{k_{q1}} \times \vec{k_{q2}}$$
 (CP+ T-)

$$(CP + T -)$$

$$\vec{P_e} \cdot \vec{k_q} imes \vec{k_{ar{q}}}$$
 (CP- T-)

$$(CP-T-)$$

- ⇒ Search for anomalous final-state interactions
- Particle multiplicity in heavy- vs. light-quark jets
 - ⇒ add long lever-arm to current tests

Colour reconnection and Bose-Einstein correls.

· lower corrections

XX total 5

POLARIZED STRUCTURE FUNCTION

PROTON: POLARISED DIS $\rightarrow \Delta q$ (POL. PARTON DISTR.)

SPIN PUZZLE (EMC): SPIN PROTON ≠ ∑ SPIN QUARKS

 \bigstar PHOTON: NO DATA AVAILABLE ON Δq^{γ}

LINEAR COLLIDER => POLARIZED BEAMS

M. Stratmann, W. Vogelsang

•
$$g_1(\sim F_1) \rightarrow e^+e^-$$
 , $e\gamma \checkmark$

• JETS
$$\rightarrow e^+e^- \checkmark \gamma \gamma \checkmark$$

CLEAR SENSITIVITY IN $\gamma\gamma$!!

SUMMARY

TWO-PHOTON QCD STUDIES FOR TESLA

- Photon structure can be measured in $e\gamma$ in the region $6 \cdot 10^{-5} < x < 0.6$, $6 < Q^2 < 10^5$ GeV². Lower x and Q^2 range reachable with smaller angle tagging (15 mrad?). F_2^{γ} in e^+e^- more difficult (smaller region).
- Access to the gluon density in the photon down to $2-5\cdot 10^{-3}$ from di-jet events.
- Unique measurements can be made of polarized parton distributions, Δq^{γ} from $e\gamma$ scattering and jets.
- Total cross section $\sigma_{tot}^{\gamma \gamma}(W)$ can be measured in $\gamma \gamma$ upto W of 400 GeV. Cross sections should be measured to the 5-10% level.
- SEVERAL PROMISING WAYS TO TEST THE LARGE $\ln 1/x$ RESUMMATION: TOTAL $\gamma^*\gamma^*$ CROSS SECTION, VECTOR MESON PRODUCTION, FORWARD JETS, DIFFRACTIVE PHOTON PRODUCTION...

TWO-PHOTON QCD WILL BE PART OF THE TESLA PHYSICS PROGRAM

tions in the photon. Already with very modest luminosity significant measurements of the polarised parton distributions become accessible at a linear collider. The extraction of the polarised structure function $g_1(x,Q^2) = \Sigma_q e_q^2 (\Delta q^\gamma(x,Q^2) + \Delta \overline{q}^\gamma(x,Q^2))$, with Δq the polarised parton densities, can however be best done at a $e\gamma$ collider for similar reasons as outlined above for F_2^γ measurements. Measurements of g_1 , particularly at low x, are extremely important for studies of the high energy QCD limit, or BFKL regime [47]. Indeed, the most singular terms of the effects of small x resummation on $g_1(x,Q^2)$ behave like $\alpha_s^n \ln^{2n} 1/x$, compared to $\alpha_s^n \ln^n 1/x$ in the unpolarised case of F_2^γ . Thus large $\ln 1/x$ effects are expected to set in much more rapidly for polarised than for unpolarised structure measurements. Leading order calculations, including kinematic constraints, show that differences in predictions of g_1 with and without these large logarithms can be as large as a factor 3 to 4 for $x=10^{-4}$ and could thus be easily measured with a few years of data taking at a photon collider.

3.4.5.3 Testing of BFKL Dynamics

Apart from the inclusive polarised structure function measurements, discussed in the previous section, several dedicated measurements exist for detecting and studying the large ln 1/x logarithm resumation effects in QCD, also called BFKL dynamics. These calculations, done in LO, underwent a revolution in the 1998 and 1999, when it was pointed out that the NLO corrections could be very large [46]. The dust is settling, showing that the corrections to experimental variables are generally not as large as thought at first, and several methods have been developed to get improved estimates [48].

The most promising measurement for observing the effect of the large logarithms is the total $\gamma^*\gamma^*$ cross-section, i.e. two-photon scattering of virtual photons with approximately equal virtualities for the two photons. Recent calculations, taking into account higher order effects, confirm that this remains a gold-plated measurement, which can be calculated essentially entirely perturbatively and has a sufficiently large cross-section. The events are measured by tagging both scattered electrons. At a 500 GeV e⁺e⁻ collider about 3000 events are expected per year (200 fb⁻¹) and a factor of 3 less in the absence of BFKL effects in the data [49]. Tagging electrons down to as low angles as possible (e.g. 25 mrad) is however a crucial requirement for the experiment.

Closely related to the $\gamma^*\gamma^*$ measurement is vector meson production, e.g $\gamma\gamma \rightarrow J/\psi J/\psi$ or (at large t) $\gamma\gamma \rightarrow \rho\rho$, where the hard scale in the process is given by the J/ψ mass or the momentum transfer t. J/ψ 's can be detected via their decay into leptons, and separated from the background through a peak in the invariant mass. Approximately 100 fully reconstructed 4-muon events are expected for 200 fb⁻¹ of luminosity for a 500 GeV e⁺e⁻ collider[50]. For this channel it is crucial that the decay muons and/or electrons can be measured to angles below 10 degrees in the experiment.

The gold plated method to look for BFKL effects at HERA is the study of so-called forward jets and particles [51]. These are jets or particles which a p_T similar to the virtuality of the γ^* and very close to the direction of the outgoing proton beam at HERA. A similar process can be studied at a linear collider in $e\gamma$ scattering, with a jet