Muon Detection and Identification

Main guidelines
Detector options
Iron segmentation
bb evts performances
Design figures

Marcello Piccolo

DE57,5ept 2000

- The relatively benign environment of lepton collisions allow to design a μ -tagger rather than a μ -detector.
 - Association between the inner tracker and the hit strings for penetrating particle is reasonably unambiguous.
 - Even in the tight environment of qq jets simulations matching is o.k.
 - No attempt will be then made to measure momentum within this subsystem.

Event Topology

- bb @ 500 GeV were chosen.
 - Tight jets
 - · Relatively low momento
 - Muon content on the high side
 - Overall a reasonable compromise.

(One of the) main ingredients: hit density

- Important to choose active detectors
- ...or operational properties

Technology Choice

- Given the reasonably small occupancy expected and the big dimension one has to cover two alternatives have been considered:
 - Plastic streamer tubes
 - Resistive plate Chambers
- Weighting the relative merit of these two technologies my inclination would be toward RPC's

- The amount of iron needed to close the magnetic flux is 1.5 m.
- The segmentation buys rejection power, at a cost of increasing the active detector area.
- A preliminary design has been carried out segmenting at 10 cm of iron ten times and then adding the remaining 50 cm all together.
- This corresponds to 12/11 planes of detector. (barrel/end-caps)
- The length of the barrel elements would be 14.5 m (long barrel option).
- The design, carried out in this way, turns out to require an amount
 of active detectors in between the already built systems and
 what's planned for the LHC apparata.

Performances

- Here is the efficiency vs. p of a configuration that uses 150 cm Fe.
- In high energy μ's identification, efficiency of last planes is at a premium.

Performances (cont.)

- Here we have the ratio of single μ to bb μ efficiency.
- Within the statistic of the simulation no relevant loss of efficiency can be seen in jetty events.

Do we need calorimetric capabilities?

- In our bb sample, (5000 evts) 4.9% of the tracks left energy in the muon filter,
- The total sample analyzed contains roughly 200,000 tracks.

Measuring energy

- Here is the correlation between the energy at the entrance of the muon system and the # of hits generated in the system itself.
- The correlation is reasonably straight and leads to an overall resolution of ...

Energy resolution

Marcello Piccolo

11

- The iron would be shaped in octagonal form.
- Practicality in construction and assembly suggests to use the long barrel configuration.
- Barrel length will be 14.4 m., broken out in three pieces: 3.7 7.0 and 3.7 m. respectively.
- Joining of the barrel pieces done in a slanted way, pointing away from the I.P.
- End-caps would as usual be pie shaped with an outside radius of 3.8 m and an inside radius of .4 m.

- One way to fill the gaps with EXISTING TECHNOLOGY for what RPC's are concerned:
 - Max ch's dimension 1.3x3.2 m²

- Use 12 ch's for the long barrel slots: 1.15x1.57...2.38
- Use 2x6 ch's for the short barrel slots:
 1.22x1.57...2.38
- Total area roughly 5000 m².

End-caps chambers

- Here is a possible chamber layout for the end-caps.
- The criterion used here was to maximize the # of ch's with one max. dimension.
- One layer filled with 14 modules; 7 different shapes would be needed.
- Relatively small area 23.5 m²/layer.

- The μ-identifier in the design sketched above will consist of:
 - 12 planes of (RPC) detector: area ~ 5000 m² (barrel)
 - · 11 planes of (RPC) detector: area ~ 500 m² (end-caps)
- Assuming strips ~ 3 cm wide, alternating read-out directions in the various planes, a total of 70,000 (one bit) discriminators channels should be implemented.
- Should one decide to implement calorimetry and read out with projective towers 25x25 cm², 2500 ADC channels would be needed.
- TDC's with a granularity 16 (32) times coarser than the overall electrodes granularity would imply 5.0 (2.5) KTDC ch's.
- Electronics performances required might vary according to the regime one would use, costs must be assessed accordingly.

Costing

Scaling from systems either built or under construction:

RPC modules ~ 600 Keuro

Electronics ~ 500 Keuro

Ancillary eq. ~900 Keuro.

Adding a 10% contingency the overall cost would be 2.3 Meuro.