Calorimeter for the TESLA-TDR

J-C BRIENT

LPNHE- Ecole Polytechnique

OUTLINE

Calorimeter concept

ECAL-HCAL design

Performances

Conclusion

Calorimeter concept

PHYSICS INPUT

Physics with multijets final state

JETS RECONSTRUCTION

The resolution on the missing energy is of importance

HERMITICY

electron and muon Id. (Z decay, In B jet, ...)

LEPTON ID.

MACHINE INPUT

 \triangleright Machine background lead to a 3-4 Tesla field \longrightarrow the coil thickness is about 2 λ_I

Compact ECAL and HCAL inside coil

Muon Id. in calorimeter (P<5-8 GeV)

Calorimeter concept

NUMBERS FROM PAST EXPERIMENTS

Take numbers from ALEPH

 \triangleright At $\sqrt{s} = 91$ GeV, the resolution on the visible mass is $\Delta M_{\rm vis} = 6.5$ GeV **BUT**

Source	$\Delta M_{\rm vis}~({\rm GeV})$	
Calorimeter energy resolution	~ 3.0	
Imperfect particle reconstruction	~ 5.5	
TOTAL	6.5	

CALORIMETER
optimized for the reconstruction
not for the resolution

\triangle WARNING \triangle

Doesn't mean the energy resolution couldn't be reasonnably good

Due to increase of dead zone of ECAL, the resolution increase with polar angle as $\Delta M_{vis} \times (1+\cos^2\theta)$

CALORIMETER

design geometry without crack barrel AND end-cap

Calorimeter concept

PARTICLES RECONSTRUCTION

$$\mathbf{Ejet} = \Sigma \mathbf{E}_{ch} + \Sigma \mathbf{E}_{\gamma} + \Sigma \mathbf{E}_{nh}$$

Identification and reconstruction of all eflow objects

- charged tracks from the tracker devices
- photons from the ECAL, with rejection of debris from the charged hadron interaction
- ▶ neutral hadrons (K_L,neutron) from the ECAL and HCAL, with rejection of debris from the charged hadron interaction

relevant parameters

- photon reconstruction efficiency (Ε_γ, dist_{γ/track})
- rate of fake photons from charged hadron interaction
- neutral hadron reconstruction efficiency (E_{h0},dist_{h0/track})
- rate of fake neutrals from charged hadron interaction

Summary of the concept

Use a large detector

ECAL, HCAL with large area

ECAL-HCAL inside coil. The space needed for HCAL (number of λ_I)
 AND a small Molière radius (for photon rec.) leads to

ECAL compactness

 Calorimeter optimize for neutral particles reconstruction rather than the energy resolution.

Small pad size, large channel multiplicity

• Identification e/μ /Ch. hadron-baryon

S/B at the MIP level

No hole, no dead zone, special attention to low angle region

dedicated geometry, Intrumented MASK

Calorimeter design

ECAL design

▶ A Silicon - Tungsten sampling calorimeter

comments:

- Known calorimeter principle
- Seems the best solution for the EFLOW
- fullfiled all requests

A Shashlik calorimeter

comments:

- Well established detector performances by test beam data
- improvment for EFLOW under continuous study
- Clearly cheaper than the previous solution

Calorimeter design

HCAL design

▶ A Tile sampling calorimeter

comments:

- Well known techniques
- could give a good hadronic resolution
- pad size is clearly the key point for the EFLOW

▶ A Digital calorimeter

comments:

- Sampling calorimeter with digital pad read-out (limited Geiger or RPC's)
- The energy is reconstructed from the pad multiplicity.
- the principle has been tested using ALEPH data
- A priori, it could be relatively cheap

Calorimeter design-performances

The missing link

Because the usual test of calorimeter performances is done with single particle (electron, pion, photon), there is a missing link to follow the general philosophy of the design:

The reconstruction algorithm

For photon as well as neutral hadron, PID,...

This link is essential to test correctly the designed calorimeter for the point of view of eflow/jets

NEW!! NEW!! NEW!! NEW!! NEW!! NEW!! NEW!!

We have to consider this link as a part of the whole detector design project

The design of the calorimeters is given by the "directoire" (french historical word for triumviratus, troika,....)

Hardware, software and physics impact

Quantify the tests on

Photon reconstruction

- classical algorithm is ready
- new method, appraoch is under development (see LC-note and LCW2000)

Lepton identification

- classical technique based on a likelihood estimator

Neutral hadron reconstruction

- to be done for the case of the TILE calorimeter
- Software of image processing for digital calorimeter

JETS reconstruction

Jet energy resolution visible mass

Photon treatement

For example here for WSI \oplus PFD02 (see LC note)

Depends on the software reconstruction package

For the same rate of fake photon

Lepton identification

Isolated track

ID. / particle	e	μ	h
e	99.8 %	0.	$\sim 5. \ 10^{-4}$
μ	0.	99.8%	$\sim 5. \ 10^{-3}$
h	0.2%	0.2%	99.5 %

For the muon, the results has been shown at the ECFA-Obernai.

For the electron, see LC-note on Eflow (pre-final draft is ready, final draft

within 2-3 weeks)

In jet

ID. / particle	e	μ	h
e			~ -
μ	0.	92. %	$\sim 1.5 \ 10^{-2}$
h	-	8.%	4 4 4 7 1 1 1

For momentum as low as 2 GeV !!! electron not yet.

Neutral hadron treatement

 IT IS POSSIBLE to reconstruct a neutral hadron very close to a charged track with reasonable efficiency and resolution (D.Orlando at ECFA-PADOVA).

Topological method - Full simulation/reconstruction

Package too slow to be used for jets

Work in progress to adapt it for jets

Use the results from the package (efficiency $(E_{h^0}, dist.)$, Rate of fake,...) and use it for fast simulation for jets. (NO reason to be far from full simulation/reconstruction)

Quasi-full reconstruction

definition

> charged tracks

- Fast simulation
- Effic(track) = 0.997
- Pmin=0.2 GeV/c

photons

- Full reconstruction
- No special care of calibration
- Emin=0.2 GeV

▶ neutral hadrons (K_L,neutron)

- Fast simulation
- Fake rate and efficiency(E,Distance) from full rec.
- Emin=0.5 GeV

JETS: The graal

▶ Test of the quasi-full versus fast reconstruction(green)

Quantify the gain in resolution for jets final state

Calorimeter studies ECFA/DESY

Conclusion

Particle decaying into boson(s) or multijets are the dominant final state in e^+e^- collision at $\sqrt{s} \leq 500 \text{ GeV}$

THEREFORE

A rather new philosophy has to be taken for the calorimeter design the EFLOW in jets is the guide line

- A large number of peoples have made large efforts to have a coherent design based on this guide line.
- The proposed calorimeters seems to be technically feasable.
 Work is in progress
- The full reconstruction is in progress

The first results show

a very promising mass/energy resolution in jets final states