Interpretation of the EGRET Excess in Diffuse Galactic Gamma Rays as a Dark Matter Annihilation Signal

Indirect Search for Dark Matter

Christian Sander

Institut für Experimentelle Kernphysik, Universität Karlsruhe

5th - 7th January 2006 - Cracow Epiphany Conference on Neutrinos and Dark Matter
Problems:
- Rotation curves of galaxies
- Matter content of the universe
- Excess in diffuse γ rays above 1 GeV

Solution:
- Dark Matter halo around our galaxy . . .
- . . . consisting of WIMPs . . .
- . . . which can annihilate into quarks and give rise to high energetic γ rays from π^0-decays
Energy/Matter Content of the Universe

- Combination of CMB data with Hubble expansion data from SNIa
- \(\sim 27\% \) matter but only \(\sim 4\% \) baryonic matter
- \(\sim 1\% \) luminous matter

\(\Rightarrow \) existence of baryonic and non-baryonic DM
Hot Dark Matter Candidates (HDM)
- Neutrinos

⇒ not more than 10% to 15% of Ω_{DM}

Cold Dark Matter Candidates (CDM)
- Massive neutrinos
- Primordial black holes
- Axions
- Weakly Interacting Massive Particles (WIMPs)

⇒ WIMPs are very promising CDM candidates
Why are WIMPs promising?

- Assumption: DM in thermal equilibrium with early universe
- Approximative solution of the Boltzmann equation:
 \[\Omega \chi h^2 = \frac{m_\chi n_\chi}{\rho_c} \approx \left(\frac{3 \cdot 10^{-27} \text{ cm}^3 \text{ s}^{-1}}{\langle \sigma v \rangle} \right) \]
 \[\Rightarrow \text{cross sections of weak interaction} \]
Rotation Curves of Galaxies

Observation vs. Expectation

- Expectation from Kepler’s law: \(v \propto 1/\sqrt{r} \) for \(r \gg r_{disk} \)
- Observation: \(v \approx const \)
- Possible explanation: existence of extended halo of DM
Rotation Curves of Galaxies

Determination of r Dependence

\[F_Z = F_G \]
\[\frac{m \cdot v^2}{r} = G \cdot m \cdot \frac{M(r)}{r^2} \]
\[\Rightarrow v = G \cdot \sqrt{\frac{M(r)}{r}} \]
\[v = \text{const} \]
\[\Rightarrow M(r) \propto r \]
\[\int \rho \, dV \propto \int \rho(r) r^2 \, dr \]
\[\Rightarrow \rho(r) \propto \frac{1}{r^2} \]
Introduction
Spectral Fit to EGRET data
Halo Profile

Diffuse Galactic Gamma Rays

EGRET Experiment

- Installed on CGRO satellite (together with BATSE, OSSE and COMPTEL)
- Measuring from 1991 to 2000
- Energy range from ~ 30 MeV to ~ 100 GeV
- Third EGRET catalog: 271 point sources
- Complete data - point sources = diffuse gamma rays

Christian Sander
Indirect Search for Dark Matter
EGRET Excess

- Comparison with galactic models
 ⇒ Excess above 1 GeV
- Excess observed in every sky direction
- Uncertainty of background or new contribution?
Excess in Different Directions

Spectral shape of excess is independent of sky region
⇒ 2 possibilities
- Uncertainty of background
- New contribution, e.g. DMA

| region | l [$^\circ$] | $|b|$ [$^\circ$] | description |
|--------|----------------|-----------------|-------------|
| A | 330-30 | 0-5 | inner galaxy|
| B | 30-330 | 0-5 | galactic plane avoiding A |
| C | 90-270 | 0-10 | outer galaxy |
| D | 0-360 | 10-20 | intermediate latitudes 1 |
| E | 0-360 | 20-60 | intermediate latitudes 2 |
| F | 0-360 | 60-90 | galactic poles |

Spectrum from different regions:
Galactic Background of Diffuse Gamma Rays

Contributions

- Decay of neutral π^0s produced in pp reactions of CR with interstellar gas
 \[p + p \rightarrow \pi^0 + X \rightarrow \gamma\gamma + X \]
- Bremsstrahlung
 \[e + p \rightarrow e' + p' + \gamma \]
- Inverse Compton
 \[e + \gamma \rightarrow e' + \gamma' \]
Dominant Contribution

- π^0 peak
- Shape determined by energy spectrum of CR protons
- CR proton spectrum measured locally by balloon experiments

![Graph showing $\phi_p E^2$ vs E [GeV] with data points and curves for different models.]
Galactic Background of Diffuse Gamma Rays

Ingredients of Propagation
- Source spectrum
- Source distribution
- Energy losses
- Diffusion
- Convection
- Radioactive decay
- Interaction with interstellar gas
- ...

Energy loss times for nucleons \approx age of universe:

Calculation of bgs with GalProp
Moskalenko et al. astro-ph/9906228
Galactic Background of Diffuse Gamma Rays

Conventional model
Local \(p \) and \(e \) spectrum representative

Optimized model
Local \(p \) and \(e \) spectrum not representative
Uncertainty of Solar Modulation

- High energies: energy dependence γ_{high} is fixed (≈ 2.7)
- Low energies: uncertainty of γ_{low} can be compensated by solar modulation
- CM: $\gamma_{\text{low}} \approx 2.0 \Rightarrow \Phi_{\text{SM}} \approx 650 \text{ MV}$
- $\gamma_{\text{low}} \approx 1.8 \Rightarrow \Phi_{\text{SM}} \approx 450 \text{ MV}$
- $\gamma_{\text{low}} \approx 2.2 \Rightarrow \Phi_{\text{SM}} \approx 900 \text{ MV}$
If WIMPs ...

... are Majorana particles
⇒ WIMPs can annihilate

... were in equilibrium with the early universe
⇒ Today WIMPs are almost at rest

... annihilate at rest
⇒ a pair of monoenergetic SM particles

Typical Feynman diagram:
Spectral Shape of DMA Signal . . .

- Fragmentation and/or decay of Annihilation products
 \[\Rightarrow \pi^0 s \]
 \[\Rightarrow \sim 30 \ldots 40 \gamma s \text{ per annihilation} \]

- Different \(\gamma \) spectrum than background (continuous CR spectrum)
 \[\Rightarrow \text{better fit to EGRET spectrum?} \]

- Spectral shape similar for different annihilation processes

Calculation of signal with DarkSusy

Gondolo et al. astro-ph/0406204

Gamma spectra for different processes:
Fit to EGRET Spectrum with DMA signal

Fit Spectral Shape Only

- Uncertainties in interstellar gas density
 ⇒ bg scaling
- Uncertainties in DM density
 ⇒ signal scaling (boost factor)
- Free bg and signal scaling
 ⇒ use point to point error $\sim 7\%$ (full error $\sim 15\%$)
Introduction
Spectral Fit to EGRET data
Halo Profile

Galactic Background
Dark Matter Annihilation
Limits on WIMP Mass
Extragalactic Background

Fit to EGRET Spectrum with CM and DMA signal

Christian Sander
Indirect Search for Dark Matter
Fit to EGRET Spectrum with OM and DMA signal

- Dark Matter
- Pion decay
- Inverse Compton
- Bremsstrahlung

E^2 flux [GeV cm^-2 s^-1 sr^-1]

Chi^2 for Full Model:
- EGRET
- Background
- Signal
- Extragalactic

Chi^2 (bg only):
- 4.7/6
- 24/7

Chi^2 (bg only):
- 10/6
- 20.6/7

Chi^2 (bg only):
- 7.5/6
- 22.4/7

Chi^2 (bg only):
- 2.5/6
- 17.7/7

Chi^2 (bg only):
- 1.2/6
- 15.2/7

Chi^2 (bg only):
- 2/6
- 10.6/7
Limits on WIMP Mass

Conventional Model

- $\Sigma \chi^2$ of 6 Regions of the Sky
- Scan over WIMP mass
 $\Rightarrow m_{WIMP} \lesssim 70$ GeV (95% C.L.)
Limits on WIMP Mass

Optimized Model

- $\Sigma \chi^2$ of 6 Regions of the Sky
- Scan over WIMP mass
 $\Rightarrow m_{WIMP} \lesssim 100$ GeV (95% C.L.)

$\chi^2/\text{d.o.f.}$ and probability:

\[
\chi^2 \quad \text{probability}
\]

$m_{WIMP} \quad \text{probability}$
Extragalactic Background

Important bg at large Galactic latitudes (low Galactic bg)

Method of EGB Determination

- Choose one energy
- Divide skymap in regions of high and low flux
- Draw observed vs. expected flux
- y-axis intercept is EGB of chosen energy
Modified Method of EGB Determination

- Use region dependent bg scaling
 Sreekumar et al. astro-ph/9709257
- Add DMA signal to prediction (new)
Extragalactic Background

Comparison of different Methods

- Bg scaling leads to significantly larger EGB
- All methods show a bump in the GeV range

![Graph showing comparison of different methods for extragalactic background.](image)
Extragalactic Background

Extragalactic DMA contribution

- Fit of new EGB with double power law and DMA signal ($\chi^2/d.o.f.=2.45/5 \Rightarrow 78\%$)
- Fit with single power law ($\chi^2/d.o.f.=8.2/8 \Rightarrow 42\%$)

Elsaesser et al. astro-ph/0405235
Directional Dependence of Excess

Signal in sky region Ψ: $\Phi_{\text{DM}} \propto \langle \sigma v \rangle \cdot \frac{1}{\Delta \Omega} \int d\Omega \int dl_{\psi} \left(\frac{\rho(l_{\psi})}{m_\chi} \right)^2$

- Smooth $1/r^2$ profile yields not enough signal \Rightarrow clumps
- Assume same enhancement by clumps in all directions
Method

- Divide skymap into 180 independent sky directions
 ⇒ 45 intervals for gal. longitude ($d_{\text{long}} = 8^\circ$)
 ⇒ 4 intervals for gal. latitude ($|\text{lat}| < 5^\circ$, $5^\circ < |\text{lat}| < 10^\circ$, $10^\circ < |\text{lat}| < 20^\circ$ and $20^\circ < |\text{lat}|$)

- Divide gamma spectrum in low and high (>0.5 GeV) energy region

- Use low energy region for bg normalization

- Use high energy region for determination of halo parameters
Determination of Halo Parameters

Isothermal Profile Without Rings

Triaxial profile with $1/r^2$ dependence at large r and core at center
- Good agreement at large latitudes
- Too little flux in galactic plane

$\left|\text{lat}\right| < 5^\circ$
$5^\circ < \left|\text{lat}\right| < 10^\circ$
$10^\circ < \left|\text{lat}\right| < 20^\circ$
$20^\circ < \left|\text{lat}\right|$
Isothermal Profile With Rings

Additional DM in galactic plane parametrized by two toroidal ringlike structures

- **Inner ring** at ~ 4 kpc; \sim thickness of lum. disk (e.g. adiabatic compression)
- **Outer ring** at ~ 14 kpc; much thicker than disk (e.g. infall of dwarf galaxy)
Visualization of Halo Profile

Dark Matter:

baryonic matter:
Introduction
Spectral Fit to EGRET data
Halo Profile

Determination of Halo Parameters
Rotation Curve

Experimental Counterpart of Rings

- **Inner ring:**
 \[M_{\text{inner}} \sim 9 \cdot 10^9 M_\odot \approx 0.3\% \text{ of } M_{\text{tot}} \]
 coincides with maximum of \(H_2 \) distribution

- **Outer ring:**
 \[M_{\text{outer}} \sim 8 \cdot 10^{10} M_\odot \approx 3\% \text{ of } M_{\text{tot}} \]
 correlated with ghostly ring of stars at \(\sim 14 \text{ kpc} \) (\(10^8 \ldots 10^9 M_\odot \))
 Ibata et al. (astro-ph/0301067)

- Massive substructures influence rotation curve of milky way
Rotation Curve of the Milky Way

Calculation

- \(\frac{m \cdot v^2}{r} = m \cdot \frac{d\Phi}{dr} \)
- Excentricity of halo and rings \(\Rightarrow \) no symmetry can be used to calculate \(\Phi \)
- Solution of Poisson equation \(\Delta \Phi = -4\pi G \cdot \rho \) by Green's function
- Ringlike structures will contribute to \(v^2 \) with negative sign inside the ring
- Calculated rotation curve has to be compatible with Milky Way
Rotation Curve of the Milky Way

Comparison with Measured Rotation Curve

- Data are averaged from three surveys with different tracers
- Rings of DM can explain change of slope at ~ 10 kpc

without rings:

with rings:
EGRET excess can be explained as Dark Matter annihilation of WIMPs in a mass range between 50 and 100 GeV

Extragalactic Background has been determined including bg scaling and a possible DM contribution of the galactic flux

From the directional dependence of the excess a possible halo profile can be determined \Rightarrow halo profile needs ringlike structures, which are correlated with observations

Determined halo profile is compatible with rotation curve of the Milky Way

not shown: EGRET data are compatible with DM consisting of supersymmetric neutralinos \Rightarrow together with constraints from EWSB, Higgs mass, $Br(b \rightarrow X_S\gamma)$ and a_μ only a small region of SUSY parameter space is left over (*hep-ph/0511154*)