X. International Conference on Hadron Structure Smolenice Castle, Slovakia, August 30 – September 3, 2004

Diffraction in High Energy ep Collisions

Armen Bunyatyan Physics Institute API für Kernphysik, Heidelberg and Yerevan Physics Institute

On behalf of the H1 and ZEUS Collaborations

:9011100

- Introduction
- Vector Meson Production and DVCS
- Inclusive Diffraction in DIS
- F_D^2 QCD fits
- Dijets and Open Charm in Diffraction
- Dijets and Open Charm with Leading Neutrons
- Conclusions and Outlook

HERA- the world's only $e^{\pm}p$ collider

! to solve the to be the to be the to be the to be the term of te

tneminet (1993-2000): integrated luminosity- more than 100 pb_1 per experiment

Diffraction–t-channel exchange of the vacuum quantum numbers

- Colourless exchange - Large Rapidity Gap $- \sum_X m \gtrsim 0.05$ $- M_X \simeq m_p$ $- M_X \simeq m_p$ to probe partonic content of diffractive exchange. to study transition from soft to hard regime and Yilisef aupinu –AA3H

If large $Q^2, \ |t|, \ p_T^{it}, \ m_q:$ pQCD at $\gamma^* \mathbb{P}$ vertex

- Regge theory: diffraction is exchange of Pomeron

→ steep energy dependence

-> weak energy dependence

between $(\mathcal{L}_* \rightarrow d\underline{q}, q\overline{q})$ and the proton

If no hard scale- Q^2 , $|t| \approx 0$: similar to <u>soft</u> hadron-hadron interactions

-Colour dipole: diffraction is exchange of colour singlet gluon ladder– Resolved Pomeron: γ^* probes \mathbb{I} structure

Photoproduction of Vector Mesons

- $\sigma \sim W^{\delta}$ for $W > 10 \ GeV$ (and $\sigma_{\gamma p}^{\gamma p}$) indicate a power law behaviour • The cross sections of VM photoproduction
- For ho, ω, ϕ : $\delta \approx 0.2$, compatible with σ_{tot}^{qp}
- \Longrightarrow Steeper W dependence for heavy • For J/Ψ : $\delta \approx 0.7$

$\Psi ar{U}$ To noitonbord evisuboxE

- Comparison to different PDFs- strong sensitivity to (generalized) gluon distribution

VM-meson Production in DIS

W dependence steeper for ρ with increasing Q^2 increases \Rightarrow Transition from soft to hard physics as Q^2 increases

Recent development in theory: the NLO calculations for Vector Mesons ! (D.Ivanov, A.Schäfer, L.Szymanovksi, G.Krasnikov - *presented at DIS-2004*)

Deeply Virtual Compton Scattering (DVCS)

New HERA measurements are well reproduced by QCD calculations based on GPDs.

Selection of diffractive DIS events

- 'Leading proton' method (scattered proton detected in 'Roman Pot' detectors)
- Rapidity gap' method
- (noitudities X^{M} of the from the theory of the subtracted from X^{M} of X^{M} , -

Properties of M_X distribution:

hon-diffractive events hon-diffractive events

diffractive events diffractive events

 $\Leftrightarrow \Longrightarrow$ subtracted from fit to M_X subtracted from fit to M_X

Energy dependence of σ_{diff} in DIS

Energy dependence of σ_{diff} in DIS

In pQCD diffraction– exchange of colour singlet gluon ladder between $(\gamma^* \rightarrow q \overline{q}, q \overline{q}g)$ and the proton.

h

Expectations: different approaches

• Two perturbative (hard) gluons

 Softer gluons are exchanged (Soft Colour Interaction model, Saturation (....)

o $\sigma^{qiff}/\sigma_{tot}$ rises less steep than g(x) or W^a

.2ID əvizulari bne əvitarilib ni nuoivenad ygrane ame
2 :stnəməruze
e M

Softer than "two hard gluon" exchange !

Cross-section of Inclusive Diffractive DIS

 ${f I}$ of barrelerred to momentum transferred to ${f r}$ 4-momentum transfer squared

$$egin{aligned} eta &= rac{5d\cdot(b-b_{oldsymbol{1}})}{O_{oldsymbol{2}}}\ x &= b &= rac{5d\cdot(b-b_{oldsymbol{1}})}{d\cdot b} &= dx \ x &= (b-b_{oldsymbol{1}})_{oldsymbol{2}} \end{aligned}$$

Cross Section:

$$(\sigma_{D}^{r})^{d,0} = F_{D}^{2} - \frac{2\pi\alpha}{3} (1 - y + y^{2}/2) \cdot \sigma_{P}^{r} (\beta, Q^{2}, x_{P}, t)$$

$$(\sigma_{D}^{r})^{d,0} = F_{D}^{2} - \frac{y^{2}}{3} - \frac{y^{2}}{3} F_{D}^{r} + y^{2}/2) \cdot \sigma_{P}^{r} (\beta, Q^{2}, x_{P}, t)$$

Factorization Properties of Diffractive Cross-Section:

(Tell and the set of the set of

$$oldsymbol{\sigma}^D(\gamma^*p o Xp) \sim \sum_i f_D^{i/p}(x_P,t,x,Q^2) \otimes \hat{oldsymbol{o}}_{\gamma^*i}(x,Q^2)$$

 $({}^{2}O, x, t, {}^{2}A)_{q/i}^{Q}$:seitiens densities for x, x, Q^{2}):

- t , $\mathbf{T} \mathbf{x}$ bexit to \diamond conditional proton parton probability distributions with final state proton
- \diamond evolve with x and Q^2 according to QCD evolution

Are they universal for diffractive DIS (!?)

.etates. Extract diffractive parton densities from F_2^D and use to predict the diffractive final .210 SIG avizulori to QCD DGLAP technique to ${\mathbb Q}^2$ and ${\mathbb Q}$ dependences as for inclusive DIS.

$x_{I\!\!P},eta,O,Q^2$ dependence of $F_{D^{(3)}}^2$

Excellent agreements between two methods and two experiments

\overline{Q}^2 and $\overline{\partial}$ dependence of $\overline{F}^2_{D(3)}$

$({}^{q}_{2}H$ dependence relatively flat (different from ${}^{P}_{2}$) – ∂

\widehat{Q}^2 and \widehat{A} dependence of $\overline{F}^2_{D(3)}$

 $({}^{q}_{2}H$ mort from field that (different from ${}^{q}_{2}$) – β dependence relatively flat (different from ${}^{2}On^{1}$ diverge β – scaling violation rising with $ln {}^{2}On^{1}$ up to large β

${inom{Q}^2}$ and x dependence of F_p^2

${inom{Q}}^2$ and ${inom{A}}$ dependence of ${f E}^2_{D(3)}$

- $({}^{q}_{2}H m n)$ dependence relatively flat (different from ${}^{2}_{2}h$) β
- \heartsuit agree of a $n^2 \heartsuit n^1$ drive gries in noise lorge \heartsuit up to large \circlearrowright
- ightarrow large gluon contribution for F_2^2 !

Diffractive Parton Densities from QCD Fit to $F^2_{D(3)}$

Apply same NLO QCD DGLAP technique to Q^2 and β dependences as for inclusive DIS \triangleright singlet quark density $\Sigma(z, Q^2)$ - directly from F_2^D $(\overline{\Sigma} = \overline{b} = \overline{u} = s = b = u, u = 2$

 \diamond gluon density $g(z, Q^2)$ - from scaling violation

эвивнэхэ эңfo noitsent mutusmom.pnol - $oldsymbol{z}$

- ullet low $oldsymbol{z}$ behaviour similar to $oldsymbol{F}_2^{ extsf{p}}$
- $m{z}$ hard gluon distribution extending to high ullet
- momentum fraction of colour singlet exchange $Q^2 \propto 6.5 \dots 800 \ GeV^2$
- large uncertainty for $g(z, Q^2)$ at z > 0.6

$x_{I\!\!P},eta,Q^2$ dependence of $F_{D(3)}^2$

– DGLAP evolution based fit describes the data over full kinematic range fata or medium Q^2 describe low Q^2 and high Q^2 data

Measurements at high Q^2 vs Predictions of QCD fit

- Improved statistics and kinematical range of new measurement compared to previous measurements
- Predictions of NLO fit based on medium
 Q² describe high Q² data
- Sub-leading trajectory needed at \mathfrak{S} high \mathfrak{X} and low \mathfrak{S}

Diffractive Dijets and Open Charm production

Ideal test of underlying dynamics of diffraction:

- Test universality of parton distributions (extracted from F_2^{Ω})
- Production mechanism is directly sensitive to the gluon content of colour singlet $exchange \rightarrow$ give constrain of shape and normalization of gluon density in diffractive exchange
- Presence of two hard scales (Q² and p_T^{jet} , m_Q)

Open Charm (\mathbf{D}^*) in Diffractive DIS

• Test of factorization in heavy flavour production in diffractive DIS

New H1 measurement:

Number of selected events: 140 ± 16

545 ^{−33} bp	ΟΊΝ ΙΗ
	(son different phase space)
305 \pm 25 (stat.) $^{+20}_{-34}$ (syst.) pb	ZEUS data (extrapolated
358 \pm 41 (stat.) \pm 61 (syst.) pb	eteb IH

 $\overline{noitools} * \mathbf{U}$

 $\mu 0.0 > \mathbf{T} x$

 $7.0> \psi> 30.0$ –

opinor sitematik SIG •

snoitoslas suitomMi \bullet

 $-5 < extsf{O}_{5} < 100 \ extsf{C} \epsilon \Lambda_{5}$

 $|\mathfrak{F}_{T,D*} > 2 \ GeV, \ |\eta_{D*}| < 1.5$

 $M_{Y} < 1.6 \ GeV$, $|t| < 1 \ GeV^2$

cross-section $\mathbf{D}^{*\pm}$

Differential $D^{*\pm}$ cross sections in Diffractive DIS

- agreement between H1 and
 ZEUS measurements
- NLO predictions below the data but agreement within errors
- also RAPGAP Monte Carlo
 agrees with data
- \Leftarrow
- support for the validity
 of QCD factorization in diffractive DIS

distributions Good agreement with data in all

Charm Contribution to Diffractive Structure Function

Well described by NLO QCD fit (ZEUS)

Diffractive dijets in DIS

SUpport for QCD factorization in diffractive DIS

NLO predictions are too high by \sim factor 2

Breaking of QCD factorization in diffractive dijet photoproduction

OJN/esed soites : ratios Data/NLO

C.0 bruotoproduction: ratio 'Data/NLO' is around 0.5

! I.0–2.0 \sim zi rotset and noteVatron the ... tud

Breakdown of QCD factorization at TeVatron

Expect similar suppression effect in resolved photoproduction at HERA (resolved photon interacts hadronically)

Kaidalov, Khoze, Martin and Ryskin: In Real Photoproduction the resolved contribution suppressed by 0.34 (Phys. Lett. B567 (2003) 61)

$\overline{(\overline{q}q)}$ norteva $\overline{)}$

Hard diffraction in pp is suppressed by factor 5-10 w.r.t. predictions using diffractive PDFs from HERA \rightarrow reduction of 'gap survival probability'

Diffractive dijets in Photoproduction

Suppression of only resolved component by factor 0.34 (predicted by Kaidalov et al.) is not favored by these measurements

Diffractive dijets in Photoproduction

Good agreement with NLO predictions using diffractive PDFs globally suppressed by ~ 0.5

Charm and Dijets with Leading Neutrons

forward direction: Possible mechanisms for production of highly energetic proton/neutron in

- Fragmentation of proton remnant

Exchange processes

 $(X'_{\mathfrak{S}} \leftarrow \pi_{\mathfrak{S}}) \mathfrak{o} \times (t, L_X)_{q/\pi} t = (Xn'_{\mathfrak{S}} \leftarrow q_{\mathfrak{S}}) \mathfrak{o}$

- Study the mechanism of leading neutron production
- Factorization hypothesis leading neutron (LN) production rate is

independent from kinematical variables

- \rightarrow neutron rescatters on the hadronic component of the photon \rightarrow - Rescattering hypothesis (I.D.'Alesio and H.U.Pirner, 2000) \rightarrow
- LN rate depends on the transverse size of virtual photon

- Dedicated detectors installed 107 m downstream in proton direction from HERA-interaction point.
- Acceptance limited by magnet apertures the Acceptance limited by magnet apertures the Acceptance h_L and ZEUS FNC: $\theta_n \lesssim_{0.8} \theta_{10} > 0.66 \ x_L$

\mathbf{D}^* with a leading neutrons

. $_{I}x$ səqiyəsəb

 Measurement is not sensitive to the different parameterizations of the pion PDF

POMPYT). Freited by a pion exchange models both in γp and in DIS (RAPGAP, POMPYT).

Dijet events with a leading neutrons

Yield of \mathbf{D}^* and Dijet events with a Leading Neutron

- .eblod noitezivotof $\leftarrow \eta$ bus $_Tq$, W, U.t. w telf si *U volting $\frac{v_{LN}}{v_{ini}}$ oite N Ratio holds.
- Ratio for Dijets is flat with E_T^{jet} , Q^2 but increase with x_{γ}^{jet} . - In ZEUS, for $x_L > 0.49$, $r^{JJ}_T = 4.9 \pm 0.4\%$,
- $r^{D^*} = 6.55 \pm 0.76^{+0.35}_{-0.46}\%$

<u>enoisulono</u>

- HERA is an ideal facility to investigate the diffractive exchange in terms of pQCD and to study transition from soft to hard diffraction, explored using different hard scales $(Q^2, M_q, p_T^{jet}, ...)$
- Measurements of inclusive diffraction and the hadronic final states in diffractive DIS
 Measurements of inclusive diffraction and the hadronic final states in diffractive DIS
- QCD factorization
- NLO DGLAP evolution
- $(\% \delta 7 <)$ noitudition contribution by gluon contribution ($\sim 7 \delta 3$
- Open questions (e.g. breakdown of factorization at TeVatron, flat dependence (σ_{tot} ,...)

Outlook

- o Still more results to come from HERA-I data
- HERA-II new quality of diffractive measurements
- estimates of statistics $\times 5$ increase of statistics
- new detectors- H1 VFPS large acceptance for low $x_{I\!P}$ and $|t| \gtrsim 0.5$ GeV².