74th PRC meeting, DESY,Zeuthen 8-9 November 2012

H1 Status Report

Armen Buniatyan

- Organisational matters
- Recent physics highlights
- Publication plan
- Computing

H1 management since July 2012:

- Stefan Schmitt [Spokesperson]
- Armen Buniatyan [Deputy Spokesperson]
- Karin Daum [Physics Coordinator]
- Katja Krüger [Physics Coordinator (until end of 2012)]
- Michael Steder [Computing Coordinator/Data preservation]

New organisational structure:

the H1 Collaboration Board (institute's representatives) is replaced by the H1 Physics Board

Recent H1 physics results

News since the last PRC:

Publications:

- DESY-12-072 Measurement of Beauty Photoproduction near Threshold using Di-electron Events with the H1 Detector at HERA
- DESY-12-100 Combined Inclusive Diffractive Cross Sections Measured with Forward (H1/ZEUS) Proton Spectrometers in DIS at HERA (details in Katarzyna Wichmann's report)
- DESY-12-107 Inclusive Deep Inelastic Scattering at High Q² with Longitudinally Polarised Lepton Beams at HERA
- DESY-12-172 Combination and QCD Analysis of Charm Production Cross Section Measurements (H1/ZEUS) in DIS at HERA

Preliminary result:

H1prelim-12-111 Analysis of Feynman Scaling with Photon Production in the Very Forward Direction in DIS at HERA

Inclusive DIS cross sections at high Q^2 (DESY-12-107)

Final measurement of inclusive NC/CC cross sections at $\sqrt{s}=319$ GeV with H1 detector

Data: e⁻p and e⁺p polarized e[±] beams →4 distinct data sets (all HERA-2 data at Ep=920 GeV)

	R	L
e^-p	$\mathcal{L} = 47.3 \mathrm{pb^{-1}}$	$\mathcal{L} = 104.4\mathrm{pb}^{-1}$
	$P_e = (+36.0 \pm 1.0)\%$	$P_e = (-25.8 \pm 0.7)\%$
e^+p	$\mathcal{L} = 101.3\mathrm{pb}^{-1}$	$\mathcal{L}=80.7\mathrm{pb}^{-1}$
	$P_e = (+32.5 \pm 0.7)\%$	$P_e = (-37.0 \pm 0.7)\%$

60< Q²< 50.000 GeV², 0.0008 <×_{Bi} < 0.65

Typical precision: NC $e^+ \sim 1.5\%$; $e^- \sim 2.0\%$ CC $e^\pm \sim 4\%$ $d\sigma/dQ^2$ cross sections of CC and NC

Polarisation dependence of total <u>CC</u> cross sections SM: $\sigma_{cc}^{\pm}(P_e) = (1 \pm P_e)\sigma_{cc}^{\pm}(0)$

Linear scaling with P_e

- Extrapolated cross sections ≈ 0
- at Pe=+1 for e-
- at Pe=-1 for e+

Demonstration of the absence of right handed weak current

\underline{NC} polarisation asymmetry

SM: difference in the σ_{NC} for leptons with different helicity states (due to chiral structure of the neutral EW exchange)

Polarisation asymmetry of NC cross section is sensitive to γZ interference terms of structure functions

 $F_2^{\gamma Z} \sim [\sigma^-(P_L) - \sigma^-(P_R)] - [\sigma^+(P_L) - \sigma^+(P_R)]$

First measurement of $F_2^{\gamma Z}$ structure function ever

Inclusive DIS cross sections at high Q^2 (DESY-12-107)

nearly 5 orders of magnitude

Improvement in precision for all PDFs in the full x range Measure process $ep \rightarrow eb\overline{b}X$ in the range Q²<1 GeV², 0.05<y<0.65, $|\eta(b,\overline{b})|<2$

b-quarks are mainly produced in photon-gluon fusion - sensitive to the gluon in the proton

- hard scales for pQCD: m_b , p_T , Q^2
- \rightarrow check consistency of QCD calculations

- identify $b\overline{b} \rightarrow eeX'$ by the semi-leptonic decays of b-quarks to electrons
- low $p_T(b)$ momentum
- extract *b*-cross-section from two low p_T -electrons
- identification of low momentum electrons ($P_T(e)$ >1 GeV) in the trigger (measurement became possible because of Fast-Track-Trigger and Jet-Trigger)

Differential beauty cross section as a function of the mean *b* quark momentum

 Access to lowest p_T(b) values ever measured in ep

Previously unexplored region near production threshold \rightarrow *b*-quark mass is the only hard scale \rightarrow less theoretical uncertainties for pQCD

• Good agreement with NLO calculation

$$\sigma(ep \rightarrow eb\overline{b}X) = 3.79 \pm 0.53 (stat.) \pm 0.58 (sys.) nb$$

H1/ZEUS combined charm cross sections (DESY 12-172)

Tagging method Q^2 range Data set N[pb⁻¹] [GeV²] 1 H1 VTX [14] Inclusive track lifetime 2000 29245 $\mathbf{5}$ D^{*+} 2 H1 D* HERA-I [10] $\mathbf{2}$ 10017 47 348 H1 D* HERA-II [18] D^{*+} 5 10025 D^{*+} 1000 351 6 H1 D* HERA-II [15] 100 ZEUS D* (96-97) [4] D^{*+} 2005 2137 6 ZEUS D* (98-00) [6] D^{*+} 1.51000 3182 _ $D^{0,\text{no}D^{*+}}$ ZEUS D⁰ [12] $\mathbf{5}$ 1000 9 134ZEUS D⁺ [12] D^+ 51000 9 134ZEUS µ [13] 2010000 8 1269

Combine all open charm HERA data

Measurements use different charm tagging techniques \rightarrow different systematics

Total of 155 measurements with 48 sources of correlated systematic uncertainty from 9 publications are combined to 52 crosssection measurements

Good description by pQCD predictions

H1/ZEUS combined charm cross sections (DESY 12-172)

Significant improvement in precision: 10% on average, 6% at low x and medium $Q^2\,$; uncertainties lower by ~ factor 2 compared to individual measurements

Expect large impact on theory

H1/ZEUS combined charm cross sections (DESY 12-172)

QCD analysis of combined HERA inclusive and charm data - made with HERAFitter

PDFs from the combined QCD analysis of inclusive DIS and charm data \rightarrow Significant reduction of uncertainties for sea quarks and gluons

Measurement of the \overline{MS} running charm mass $m_c(m_c)$ in FFNS at NLO

$$m_{\rm c}(m_{\rm c}) = 1.26 \pm 0.05_{\rm exp.} \pm 0.03_{\rm model} \pm 0.02_{\rm param.} \pm 0.02_{\alpha_{\rm S}} \, {\rm GeV}$$

 \rightarrow consistent with the world average (1.275 \pm 0.025) GeV

Impact on the LHC predictions for $W^{\!\pm}$ and Z

The predictions for W^{\pm} , Z inclusive production cross sections vary as a function of charm mass M_c for a given model and for fixed M_c from one model to another.

Using charm mass values obtained from the fits to HERA data (for each model) reduces the uncertainties of predictions due to M_c

Energy dependence of Feynman-x distribution for very forward photons (H1prelim-12-111)

Extension of DESY-11-093 (Measurement of Very Forward Photon production in DIS)

- forward photons (η >7.9) measured in the FNC Calorimeter
- are mainly from $\pi^{\rm O}$, produced from the fragmentation of proton remnant

Goal - study the energy (W) dependence of $x_F = 2p_{\parallel}^*/W$ distributions \rightarrow test Feynman scaling (in particular interesting for tuning of Cosmic Ray hadronic interaction models)

Large differences between the predictions. None of models describes the data well

Energy dependence of Feynman-x distribution for very forward photons (H1prelim-12-111)

For W-dependence make ratios of x_F distributions W2/W1 and W3/W1

W(130-190 GeV) / W(70-130 GeV)

W(190-250 GeV) / W(70-130 GeV)

- Data show no W dependence of x_F distribution (consistent with Feynman scaling)

- Models indicate deviations from scaling - lower photon rate with increasing W

Publication plan is efficiently realised

7 papers already published in 2012

~20 ongoing analyses, to be finished in 2012-2014

H1 data analyses will continue also after 2014, expect ~1-2 paper/year → Data Preservation crucial

H1 computing /data preservation

- Simulation, reconstruction and the analysis framework software final
- Final data sets are ready (complete sets of HERA-1 and HERA-2 , fully calibrated)
- Infrastructure stable and reliable. Powerful computing environment for physics analyses guaranteed until end of 2014 (~1000 batch slots)
- Development of validation and archival systems (for data preservation and analyses beyond 2014) close to completion
- Efficient MC production- ~2×10⁹ events/year
- Anticipate continuous large scale MC production in 2013/2014 for ongoing analyses and for the data preservation

Summary

H1 Collaboration continues to be very active

- 7 papers published so far in 2012, including 2 H1/ZEUS combinations
- ~20 ongoing analyses planned to be finished during 2012-2014
- Computing (software/hardware) in excellent shape
- Essential contribution to data preservation efforts;

crucial to ensure that H1 analyses can continue after 2014

