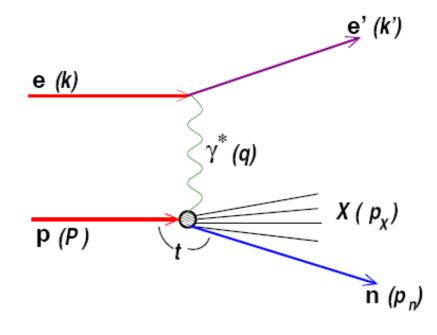
Low-x workshop on deep inelastic scattering, diffraction, final states and related subjects 3-7. June 2011 Santiago de Compostela

Forward Neutron and Photon results from HERA

Armen Bunyatyan

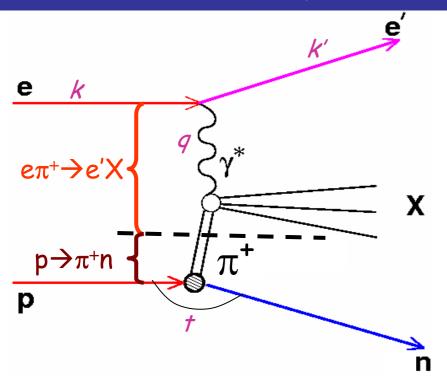
On behalf of the H1 and ZEUS Collaborations


Outline:

- Forward neutron measurements in DIS
- Forward neutrons in dijet photoproduction
- Forward photon spectra in DIS

Introduction

Significant fraction of ep scattering events contains a high energy forward neutron produced at very small angles.



exchange of virtual particle $(\pi^+, \rho^+, .)$ (a virtual particle from the proton undergoes DIS with virtual photon)

 \rightarrow expected to dominate the forward neutron production at large x_L (=En/Ep) and low $p_{T,n}$

<u>fragmentation of proton remnant</u> (e.g. Lund string)

Kinematics and Vertex factorisation

ep→ e'nX

Lepton variables:

$$Q^2 = -(k-k')^2$$

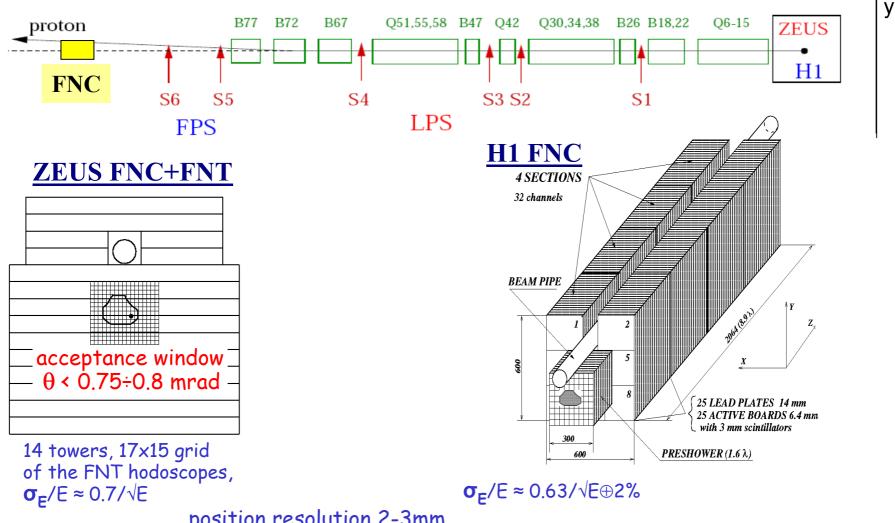
 $x = Q^2/(2p \cdot q)$

Leading neutron variables:

$$x_L = E_n/E_p$$

 $t = (p-p_n)^2 \text{ (or } p_T^2)$

In the exchange model the cross sections factorise, e.g. for one pion exchange


$$\sigma(ep \rightarrow e'nX) = f_{\pi/p}(x_L,t) \times \sigma(e\pi \rightarrow e'X)$$

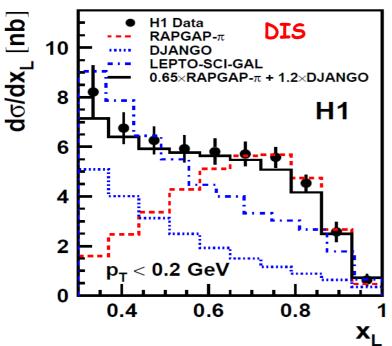
 $f_{\pi/p}(x_L,t)$ - pion flux: probability to emit pion from the photon with given x_i , t

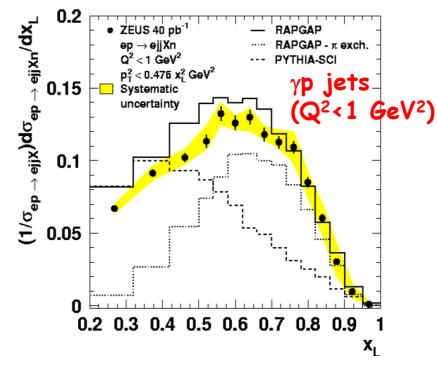
$$\sigma(e\pi \rightarrow e'X)$$
 - cross-section of $e\pi$ scattering

- Leading Neutron production independent from photon vertex
 probe structure of exchanged particle
 factorisation violation due to absorption/rescattering

H1 and ZEUS detectors for leading neutrons

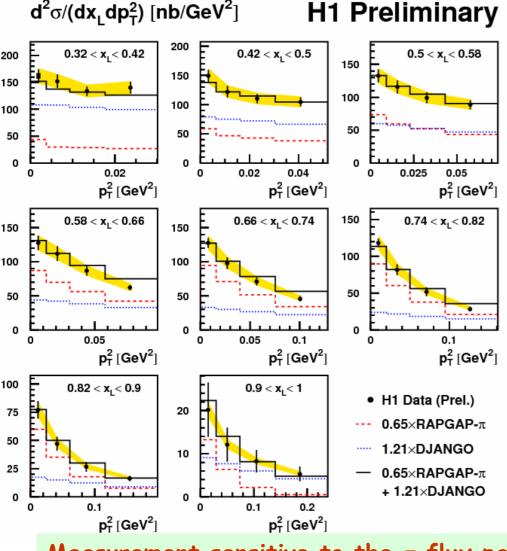
position resolution 2-3mm


- Longitudinal segmentation allows reliable discrimination between e/m and hadronic showers (i.e. between photons and neutrons)
- Acceptance limited by beam apertures and detector size
- p_{T} resolution is dominated by p_{T} spread of proton beam (50-100 MeV)


Forward neutron cross section vs x_1 : DIS and γp jets

Eur.Phys.J.C68 (2010) 381

Nucl.Phys.B827 (2010) 1

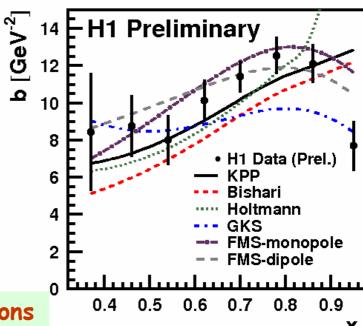

- Data described by a combination of <u>standard fragmentation</u> (DJANGO, RAPGAP) and π^+ -exchange (RAPGAP- π) MC models over the full range
- · 'Standard' fragmentation models (DJANGO, RAPGAP) don't describe the shape at high x_L
- SCI (soft colour interactions) models too low at high x_L
- π^+ -exchange model (RAPGAP- π) describes the shape of data distribution well for $x_L > 0.7$

π -exchange- the dominant mechanism at large x_{L}

Forward neutron: double differential cross section in p_T^2 and x_L

Extend the measurement differentially in transverse momentum of neutron $p_{\scriptscriptstyle T}$

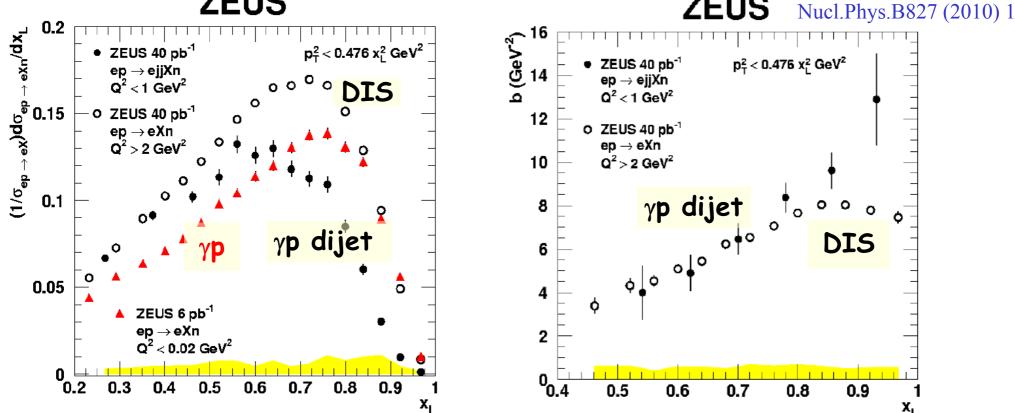
H1prelim-10-113 (6 $< Q^2 < 100 GeV^2$, 0.05 < y < 0.6)



Combination of RAPGAP- π and DJANGO describes well the $\mathbf{p_T}^2$ distributions (using same weighting factors as for $\mathbf{x_L}$)

different p_T^2 slopes for standard fragmentation and pion-exchange: ~constant vs x_L for DJANGO; increasing with x_L for RAPGAP- π

Fit the distributions by a single exponent.

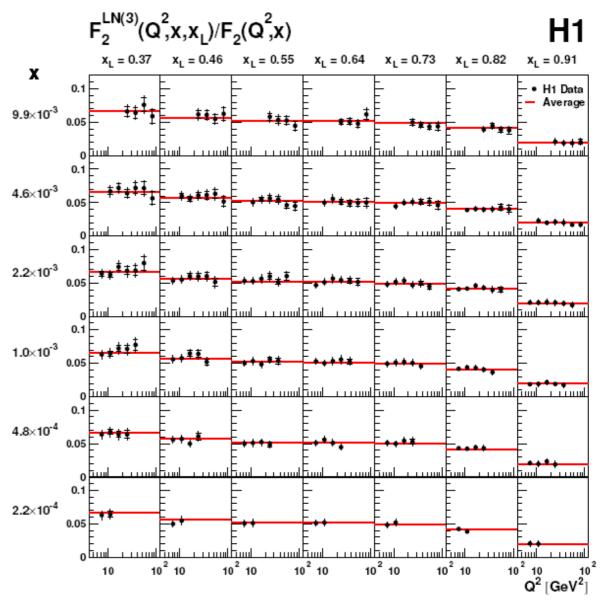

$$\frac{1}{\sigma_{inc}} \frac{d\sigma_{LN}}{dp_T^2 dx_L} = a(x_L) \cdot e^{-b(x_L) p_T^2}$$

Measurement sensitive to the π flux parameterisations

Forward neutrons: photoproduction of jets vs DIS

Compare neutron yield and b-slopes in DIS, $\gamma \mathbf{p}$ -dijets and inclusive $\gamma \mathbf{p}$. ZEUS

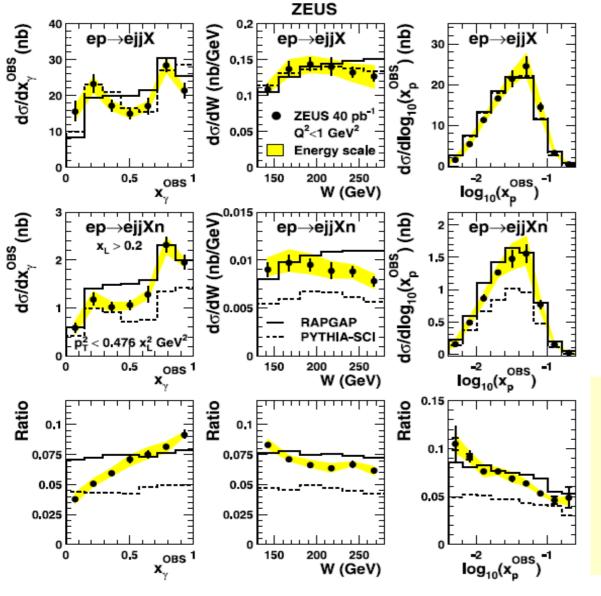
- photoproduction of forward neutrons suppressed at low $x_{L}(x_{L} < 0.85)$ consistent with neutron absorption through rescattering (more absorption in γp than in DIS due to larger transverse size of real photon)
- •Suppression is not so prominent in jet production (hard scale provided by E-jet)
- dijets suppressed at high $x_1 \rightarrow$ phase space limitation
- similar b-slopes in DIS & γ p-dijets; slightly different at high x_L \rightarrow same production mechanism for forward neutrons


Leading Neutron production rate in DIS: $F_2^{LN(3)}(Q^2,x,x_L)$ to $F_2(Q^2,x)$ ratio

Eur.Phys.J.C68 (2010) 381

$$\frac{d^3\sigma(ep \to eNX)}{dQ^2dx dx_L} = \frac{4\pi\alpha^2}{xQ^4} \left[1 - y + \frac{y^2}{2}\right] F_2^{LN}(Q^2, x, x_L)$$

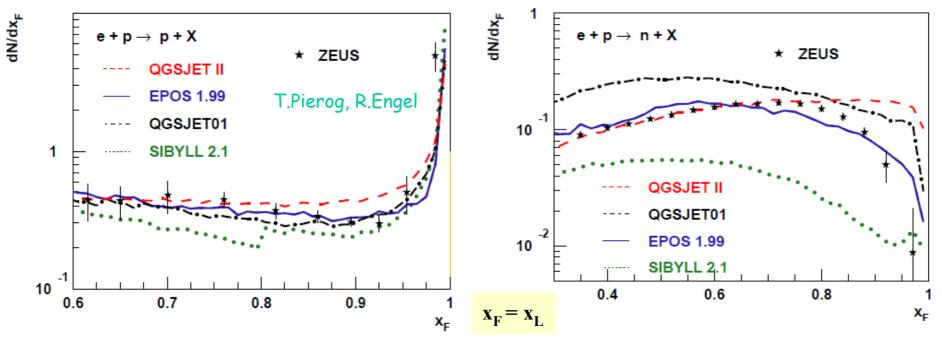
$$F_2^{LN}(Q^2, x, x_L)/F_2(Q^2, x)$$
 is mostly flat in Q^2 and x


i.e. LN production rate, kinematics is approx. independent of (Q^2,x) \rightarrow consistent with factorisation, limiting fragmentation (overall suppression of LN events is also possible)

 $^{*)}F_{2}(Q^{2},x)$ from the H1PDF2009 parameterisation

Dijet photoproduction with Leading Neutrons

Dijet cross sections in inclusive γp and in γp with LN, and their ratios.



- . W total energy of γp system
- $\cdot x_{\gamma} = \sum_{jets} (E p_z) / (2yE_e)$
- $\cdot x_p = \sum_{jets} (E + p_z)/(2E_p)$
- strong dependence of ratio of x, distributions for data, flat in MC
- resolved photon is suppressed in events with neutron.

Interplay of forward particle production and Cosmic Ray physics

The tuning of cosmic ray interaction models crucially depends on the input from the measurements at accelerators

In particular, the forward measurements (baryons, π^0 , γ) are of the greatest importance for the model tuning, since the shower development is dominated by the forward, soft interactions.

- reasonable predictions for leading proton data (after model tuning)
- none of models describe leading neutron data well
- What about π^0 , photons?

EPOS 1.9: (Pierog, Werner),

QGSJET 01 and II: (Kalmykov, Ostapchenko),

SIBYLL 2.1: (Engel, Fletcher, Gaisser, Lipari, Stanev)

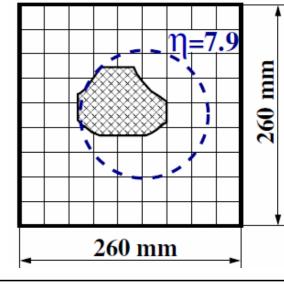
Forward photon analysis

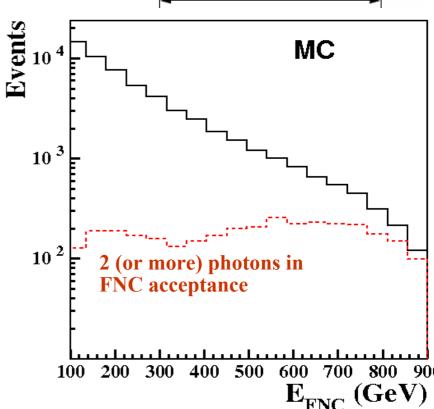
H1prelim-11-012

Measure forward photons in FNC, compare to - MC models (CDM and LEPTO)

- hadronic interaction models used for analysis of cosmic rays (EPOS, SIBYLL, QGSJET)

What are our photon candidates?


At high x_{L} , many FNC clusters are from two photons!

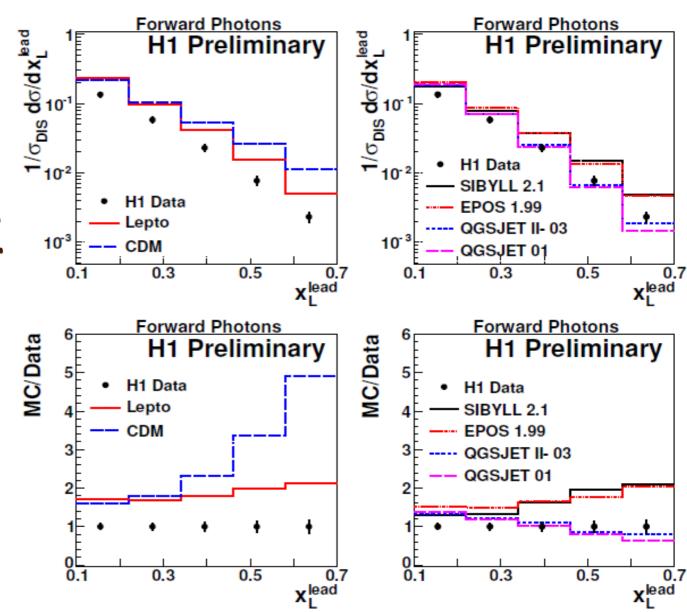

the measurement represents the sum of photons inside the angular range defined by the FNC geometrical acceptance (η >7.9).

At lower x_1 we can assume that to a good approximation to measure single photon.

For photons with $\eta > 7.9$ provide cross sections:

- x_{L} and p_{T} of most energetic photon in the range 0.1<x, < 0.7
- $-x_1$ of sum of all photons

Forward photon production cross sections

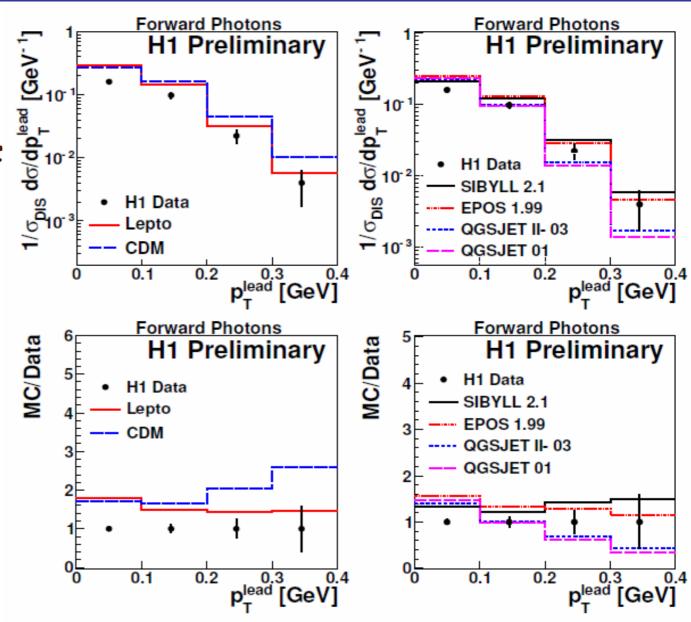

H1prelim-11-012

6 < Q² < 100 GeV², 0.05 < y < 0.6, 2006-2007 data, Lumi=126pb

Photon rate in all tested MC models is significantly higher than in data.

LEPTO model describes the shape reasonably well. CDM to data discrepancy larger at higher x₁

QGSJET models describe data well except at low x_L

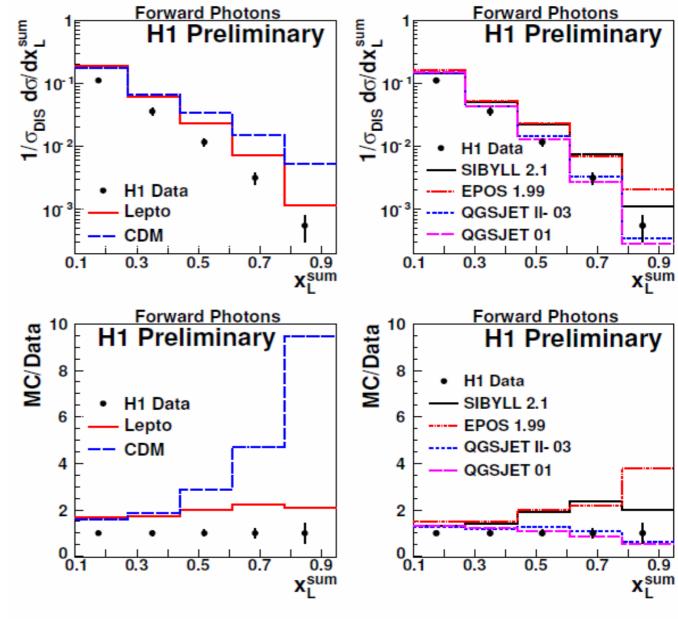

Forward photon production cross sections

H1prelim-11-012

Photon rate in all tested MC models is significantly higher than in data.

LEPTO model describes the shape reasonably well.

 p_T^2 spectrum shape is well described by SIBYLL and EPOS models. QGSJET also agree with data within uncertainties (except lowest p_t)


Forward photon production cross sections

H1prelim-11-012

Photon rate in all tested MC models is significantly higher than in data.

LEPTO model describes the shape reasonably well. CDM - large discrepancy at higher x₁

QGSJET models describe data shape better than SIBYLL and EPOS

 $x_L^{sum} = \sum E_i / E_{p-beam}$ sum of all photons with $\eta > 7.9$

Summary

- \bullet precise measurements of forward neutron x_L and p_T^2 in DIS and dijet photoproduction
- the measurements well described by the combination of 'standard' fragmentation models and models with pion exchange
- Pion flux can be further constrained using the measurement.
- In photoproduction the leading neutron production is suppressed at $x_{L}<0.85$. Suppression is not prominent in dijet photoproduction
- \bullet x, distribution: different shapes observed in events with neutrons and inclusive photoproduction- not reproduced in MC
- First measurement of very forward photon production in DIS.
- Measurements show sensitivity to proton fragmentation MC models
- ◆ MC models predict significantly higher yield of photons than in the data
- LEPTO describes the shape well; too many photons at high energies in CDM
- Useful input for models of cosmic ray interactions with matter