XXXIX International Symposium on Multiparticle Dynamics Gomel Region, 4-9 September 2009

Inclusive Diffraction at HERA

Armen Bunyatyan for the H1 and ZEUS Collaborations

- Introduction
- Diffractive structure functions: comparison of different data
- QCD fits and diffractive PDFs
- Comparison with diffractive charm production
- Diffractive F_L
- Factorisation test in diffractive dijet production
- Conclusions

HERA

The world's only electron/positron-proton collider at DESY, Hamburg $E_e = 27.6 \text{ GeV}$ $E_p = 920 \text{ GeV}$ (also 820, 460 and 575 GeV) (total centre-of-mass energy of collision up to $\sqrt{s} \approx 320 \text{ GeV}$)

Two colliding experiments: <u>H1 and ZEUS</u>

HERA-1: 1992 - 2000 HERA-2: 2003 - 2007 total lumi: 0.5 fb⁻¹ per experiment

Low x Physics and Diffraction

xf

Low x physics, as revealed by HERA, is the physics of very large gluon densities

Associated with a large (> 10%) diffractive content

In $\gamma^{\star}p{\rightarrow}XY$, virtual photon resolves structure of exchange.

-enormous progress in understanding diffraction in terms of partons

- -testing new QCD factorisation ideas
- -essential for the predictions of diffractive cross sections at LHC
- -related to non-linear evolution (low x saturation), underlying event (gap survival), confinement

ISMD 2009 3

p'(Y)

Definition of kinematic variables

- t-channel exchange of vacuum quantum numbers
- · proton survives the collision intact or dissociates to low mass state, $M_y \sim O(m_p)$
- large rapidity gap
- small t (four-momentum transfer) and x_{IP} (fraction of proton momentum); $M_X \ll W$

~10% of low-x DIS events at HERA are diffractive

distinguish two classes of events depending on photon virtuality:

- $Q^2 \sim 0 \rightarrow photoproduction$
- $Q^2 \gg 0 \rightarrow deep \text{ inelastic scattering (DIS)}$

Diffraction at HERA

If no hard scale - Q², |t|≈0 : similar to <u>soft</u> hadron-hadron interactions - Regge theory: diffraction is exchange of Pomeron →Weak energy dependence

If hard scale (large Q², |t|, p_T^{jet}, m_Q) present: <u>study diffractive phenomena in terms of QCD</u> - Resolved Pomeron: probe the structure of exchanged object

- Colour dipole: diffraction is exchange of colour singlet gluon ladder

between ($\gamma^* \rightarrow q\overline{q}$, $q\overline{q}q$) and the proton

 \rightarrow Steep energy dependence

HERA- unique facility to study transition from soft to hard regime and to probe partonic content of diffractive exchange.

Diffractive event selection

Leading proton' method (LPS)- scattered proton detected in 'Roman Pots' (LPS, FPS) free of p-diss.background, t and x_{IP} measurement, but low acceptance/statistics

Armen Bunyatyan, Inclusive diffraction at HERA

Cross-section of inclusive diffractive DIS

$$egin{array}{ll} m{t} = (m{p} - m{p}_{m{Y}})^2 \ m{x}_{I\!\!P} = rac{q\cdot(m{p} - m{Y})}{a\cdotm{p}} \end{array}$$

$$eta = rac{Q^2}{2q\cdot(p-Y)}$$

photon virtuality $egin{aligned} & x = rac{Q^2}{2q \cdot p} & ext{Bjorken scaling variable} \ & W^2 = (p+q)^2 & \gamma^* p \ ext{CM energy squared} \end{aligned}$

> 4-momentum transfer squared fraction of p momentum transferred to $I\!\!P$ ($x_{I\!\!P} \simeq 1 - E_Y/E_p$) fraction of $I\!\!P$ momentum carried by struck quark $(x_{I\!P}\beta = x)$

Diffractive DIS cross-section:

 $rac{d\sigma^D}{deta dQ^2 dx_{I\!\!P} dt} = rac{2\pilpha}{eta O^4} (1-y+y^2/2) \cdot \sigma^{D(4)}_R(eta,Q^2,x_{I\!\!P},t)$ $\sigma_{R}^{D(3)}(\beta, Q^{2}, x_{I\!\!P}) = \int \sigma_{R}^{D(4)}(\beta, Q^{2}, x_{I\!\!P}, t) \cdot dt$ Reduced cross-section:

$$\sigma_R^D = F_2^D - \frac{y^2}{1+(1-y)^2} F_L^D \quad (\sigma_R^D = F_2^D \text{ if } F_L^D = 0)$$

Proton tagged data: ZEUS vs H1

 New H1-FPS HERA-2 data (156 pb⁻¹) improve statistics by factor of 20 and expand phase space to higher Q²

 Fair agreement between H1-FPS and ZEUS-LPS results (normalisation uncertainties: H1-FPS ~6%, ZEUS-LPS ~10%)

Large Rapidity Gap data : ZEUS vs H1

Armen Bunyatyan, Inclusive diffraction at HERA

Comparison between methods: proton tagged (LPS, FPS) vs LRG data

Comparison between methods: LRG vs M_{x} (ZEUS)

Agreement in shape; ~17% difference in normalisation (p-dissociation)

Factorisation in diffraction

Armen Bunyatyan, Inclusive diffraction at HERA

Proton tagged data: t-dependence

- Exponential shape, e^{bt}, with b=6÷7 GeV⁻²
- \blacksquare No dependence on Q^2 and β
- Also very little X_{IP} dependence

 $\sigma_{\rm r}^{\rm D(4)}$ at two t-values

•low x_{IP} / high β falling (Pomeron-like) behaviour •high x_{IP} / low β rising (Reggeon-like) behaviour

•Compatible x_{IP} dependence in each t bin

Regge fit (Pomeron+Reggeon)

ZEUS: $a_{IP}(0)=1.11\pm0.02\pm0.02$ H1: $a_{IP}(0)=1.12\pm0.01\pm0.02$

a_{IP}(0) close to soft 1.08 → consistent with soft Pomeron intercept

ZEUS: a'_{IP}=0.01±0.06±0.05 GeV⁻² H1: a'_{IP}=0.06±0.13 GeV⁻²

a'_{IP} is not consistent with 0.25 GeV⁻² (multi IP, absorption effects ?)

Proton vertex factorisation: Pomeron intercept

·Variables describing proton vertex (x_{IP} ,t) factorise from those at photon vertex (β ,Q²) to good approximation

 \cdot (β ,Q²) dependence interpreted in terms of **Diffractive Parton Densities (DPDFs)**, measuring partonic structure of exchange

QCD fits to diffractive data $\sigma_r^{D(3)}$

-Use NLO DGLAP evolution analysis technique to Q^2 and β dependences of diffractive cross sections. Extract quark and gluon distributions, with DPDFs parameterised vs z at a starting scale Q_0^2

- Assume Regge factorisation
- Make use of different data sets, theoretical models and approaches
- At fixed x_{IP}, F₂^D constrains quarks; gluons constrained from scaling violation $dF_2^D/dlnQ^2$

Simultaneous fit to ZEUS LRG and LPS data ($Q^2 > 5 GeV^2$)

Two fit results (fit S, fit C) depending on the starting parameterisations

Armen Bunyatyan, Inclusive diffraction at HERA

ZEUS DPDFs from inclusive data

- quarks and low-z gluons to few percents (z is long. momentum fraction of exchange)
- gluon dominates
- high-z gluons poor constraint → large uncertainties: low sensitivity of inclusive data to gluons
- reasonable agreement with H1 DPDF fits up to large uncertainty on high-z gluon

ZEUS fit S vs fit C

Comparison ZEUS vs H1 DPDFs

Gluon momentum fraction

Gluon momentum fraction ~ 60-70%

Diffractive Jets at DIS: QCD dijet fit

Jet production: ideal test of underlying dynamics of diffraction: -Cross sections calculable in pQCD (hard scales: Q^2 , p_T^{jet}) -Production mechanism is directly sensitive to the gluon content -Test universality of parton distributions (extracted from F_2^D)

Fit S fails at high z_{IP} ;Fit C describes dijet data Dijet cross sections constrain gluon at high z

Gluon densities from dijet fit

Describing other diffractive DIS processes: charm production

As well as inclusive cross-sections and jets in DIS, DPDFs describe diffractive charged current, charm, particle flow and spectra

H1 diffractive charm cross sections compared to predictions using H1-DPDFs

Fair agreement with data

First F_L^D measurement

A new test of diffractive gluon density in DIS

$$\sigma_r^{D(3)}(Q^2,\beta,x_{IP}) = F_2^{D(3)} - \frac{y^2}{2(1-y+y^2/2)} F_L^{D(3)}$$

Explore data at three proton beam energies: 920 GeV (21 pb⁻¹) 575 GeV (11 pb⁻¹) 460 GeV (6 pb⁻¹)

With different beam energies measure $\sigma_r^{D(3)}$ at different y and fixed Q², β , x_{IP}

 F_L^D measured ~3 σ from zero Results compatible with predictions based on DGLAP fits to F_2^D $\sigma_L/\sigma_T = F_L^D/(F_2^D - F_L^D) \sim 0.5$

β

QCD Factorisation in diffraction

QCD hard scattering collinear factorisation in diffractive DIS

(J.Collins; Phys.Rev.D57 (1998) 3051)

$$\underbrace{e}_{\substack{\gamma^{*} \\ \gamma^{*} \\ P}} \underbrace{\sigma^{p}(\gamma^{*}p \rightarrow Xp) \propto \sum_{i} f_{i}^{D}(x_{IP}, t, x, Q^{2}) \otimes \sigma^{\gamma^{*}, i}(x, Q^{2})}_{i}}_{F_{i}^{D}} \underbrace{\sigma^{p}(\gamma^{*}p \rightarrow Xp) \propto \sum_{i} f_{i}^{D}(x_{IP}, t, x, Q^{2}) \otimes \sigma^{\gamma^{*}, i}(x, Q^{2})}_{i}}_{i}$$

$$f_{i}^{D} \quad -\text{diffractive parton distribution function -}_{conditional proton parton probability distributions}}_{with final state proton at fixed x_{IP}, t}$$

$$\sigma^{\gamma^{*}, i} \quad -\text{universal hard scattering cross section}$$

Proven for diffractive DIS. Is not necessarily true for hadron-hadron collisions

How the QCD factorisation can be studied/tested ?

- extract diffractive PDFs from NLO DGLAP fit to F₂^D from inclusive measurement
- measure an exclusive diffractive final states, open charm and dijets; in pp, DIS and γp
- compare the measurement to theory predictions

Factorisation in diffraction: diffractive jet production at TeVatron

huge difference between the predictions based on the F_2^D fits from HERA and the measurements ! Factorisation is broken in pp

Violation of factorisation can be understood in terms of (soft) rescattering between the two hadrons and their remnants, in initial and final state, suppressing the large rapidity gap

'Gap survival' factor S²~0.1

Very essential for the predictions for Diffractive Higgs production at the LHC

Jets and charm in diffractive photoproduction at HERA

 photon (virtual/real) is directly involved in hard scattering

 $x_{\gamma} = 1$

(due to hadronization and resolution not exactly true for measured x_{y})

photon fluctuates into hadronic system.
 which takes part into hadronic scattering

_x_γ<1

Rescattering leads to factorization breaking and rapidity gap fill up suppression of cross section = 1-"rap.gap.survival probability"

In photoproduction resolved contribution expected to be suppressed (e.g. suppression~0.34 Kaidalov, Khoze, Martin, Ryskin: Phys.Lett.B567 (2003), 61)

Diffractive dijets in photoproduction

- good shape description

- -ZEUS: <u> E_t^{jet1} > 7.5 GeV</u> \rightarrow good description of jet data. no suppression
- -H1: <u> $E_{\pm}^{je\pm1}$ > 5 GeV</u> \rightarrow suppression by factor ~2, no x_{γ} dependence (suppression also at high x_{γ})
- higher $E_t \rightarrow$ more 'direct-like' events, peak at higher x_{γ}

NLO calculations: Frixione/Ridolfi and Klasen/Kramer

Cross section differential in $E_{\mathsf{T}}^{\mathsf{jet}}$

•Suggestions of harder E_t^{jet} dependence in data than NLO theory $\rightarrow E_T$ dependent gap survival probability

•Could rescattering effects for photon depend on E_T , not x_γ ? •Non-trivial kinematic correlations . Final conclusion pending!

Diffractive to inclusive dijet ratio

Measures the ratio of diffractive gluon to inclusive gluon

•full or partial cancellation of experimental and theoretical uncertainties: photon PDFs, scale uncertainties, jet energy scales

sensitive to gap survival, but also to difference between phase spaces

Diffractive to inclusive dijet ratio

Use z_{IP} <0.8 to reduce sensitivity to PDF uncertainties

Data compared to RAPGAP/PYTHIA (with and without multi-parton interactions; we know that multiple interactions are needed to describe the low Pt jet production);

With MI model fair description of data over a large phase space.

Summary

- HERA produced a lot of results on diffraction, more results are coming.
- Agreement between H1 and ZEUS measurement and between different analysis methods used to extract diffraction.
- Regge factorization assumption is a good approximation to describe diffractive data at HERA.
- Diffractive PDFs well constrained and tested: DPDFs from HERA are essential ingredients for the prediction of diffractive cross sections at the LHC, e.g. diffractive Higgs production.
- In diffractive DIS, the validity of QCD factorisation confirmed by the measurements of jet and charm production
- In the photoproduction of dijets a large violation of factorisation is observed in H1 data. Suppression is dependent on E_{T}^{jet} . More investigations needed.
- Ratio of diffractive to inclusive photoproduction dijets cross sections measured. Trend of the data can be interpreted using multiple interactions.