PHOTON-2013

International Conference on the Structure and the Interactions of the Photon Paris, 20-24 May, 2013

Strangeness production in DIS at HERA

Armen Buniatyan

Physikalisches Institut Ruprecht-Karls-Universität Heidelberg

On behalf of the H1 and ZEUS Collaborations

- Introduction
- K_s^0 and Λ production cross sections
- Λ - $\overline{\Lambda}$ asymmetry
- Scaled momentum distributions of K^{0}_{s} and Λ

[H1 Coll., H1prelim-13-031, 13-033]

[ZEUS Coll., JHEP 1203:020,2012]

HERA

The world's only electron/positron-proton collider at DESY, Hamburg $E_e = 27.6 \text{ GeV} \quad E_p = 920 \text{ GeV}$ (also 820, 460 and 575 GeV) (total centre-of-mass energy of collision up to $\sqrt{s} \approx 320 \text{ GeV}$)

Two collider experiments: <u>H1 and ZEUS</u>

HERA-2: 2003 - 2007 total lumi: 0.5 fb⁻¹ per experiment

Kinematics of Deep Inelastic Scattering

$\begin{aligned} Q^2 &= -(k-k')^2 & \text{virtuality of exchanged boson - 'resolving power' of probe} \\ & \times &= Q^2/2p \cdot q & \text{Bjorken scaling variable - fraction of proton momentum carried by} \\ & \text{struck quark} \\ & \text{y} &= p \cdot q/p \cdot k & \text{inelasticity variable: } y = Q^2/(s \cdot x) \end{aligned}$

Different mechanisms contribute

Measurements of strange particles at HERA (K_{s}^{0} , Λ) allow us to:

- test the QCD predictions
- investigate suppression of strangeness relative to light flavours
- test of $\lambda_{\textbf{s}}$ universality
- test of fragmentation/hadronisation models
- optimise the Monte Carlo parameters
- constrain fragmentation functions

<u>MC</u>: hard partonic processes at the Born level at leading order in α_s higher order QCD effects: MEPS (Rapgap, Lepto) CDM (Djangoh)

JETSET - hadronisation process in the Lund string fragmentation model:

 $\lambda_s = 0.286$, $\lambda_{aa} = 0.108$, $\lambda_{sa} = 0.690$ tuned to e⁺e ⁻ data (ALEPH)

NLO QCD & FF: AKK+CYCLOPS: e+e- (Albino, Kniehl, Kramer) DSS: e+e-, pp, ep (DeFlorian, Sassot, Stratmann)

Visible cross sections for $~{
m K^0}_{
m s}$ and Λ

 $7 < Q^2 < 100 \ GeV^2$, 0.1 < y < 0.6

145< Q²< 20000 GeV² , 0.2 < y < 0.6

 $\sigma_{vis}(ep \rightarrow eK_S^0 X) = 10.66 \pm 0.04(stat.)^{+0.50}_{-0.53}(sys.) nb \sigma_{vis}(ep \rightarrow eAX) = 144.7 \pm 4.7(stat.)^{+9.4}_{-8.5}(sys.) pb$

λ _s	0.286	λ _s	0.220	0.286
$\sigma_{vis}(ep \rightarrow eK^0_sX) CDM$	9.88 nb	σ _{vis} (ep→e ΛX) CDM	136 pb	161 pb
$\sigma_{vis}(ep \rightarrow eK^0_sX) MEPS$	10.93 nb	σ_{vis} (ep→e Λ X) MEPS	120 pb	144 pb

K⁰_S differential cross sections

$7 < Q^2 < 100 \ GeV^2$, 0.1 < y < 0.6 (low Q^2 region)

H1prelim-13-033

- The cross sections fall rapidly with Q² and p_T
- MEPS (Rapgap) describes Q^2 and η
- CDM (Djangoh) is slightly below the data
- Both models fail to describe the $p_{\rm T}$ dependence

Λ differential measurements

145< Q^2 < 20000 GeV², 0.2 < y < 0.6 (high Q^2 region)

H1prelim-13-031

- The cross sections fall rapidly with Q^2 and p_{τ}
- MC models follow the general behavior of data
- Best description is obtained for MEPS with λ_s = 0.220

Ratio of visible cross sections for K⁰_s to charged partcles

$$R = \frac{\sigma_{vis}(ep \to eK_s^0 X)}{\sigma_{vis}(ep \to eh^{\pm} X)} = 0.0721 \pm 0.0003 \text{ (stat .)}_{-0.0024}^{+0.0019} \text{ (sys .)}$$

H1prelim-13-033

best description for CDM is obtained for $\lambda_{s} = 0.286$

- p_T shape of the ratio is not described
- \sim large sensitivity on λ_s

λ	0.220	0.286	0.350
CDM	0.064	0.073	0.081

Raito of Λ production to DIS cross section

H1prelim-13-031

Best description is obtained by CDM (Djangoh) for $\lambda_s = 0.220$

145
< Q² < 20000 GeV² , 0.2 < y < 0.6

Data do not show any evidence for a non-vanishing $\Lambda - \overline{\Lambda}$ asymmetry in the phase space region investigated

K^{0}_{s} and Λ scaled momentum spectra in DIS

Fragmenation Functions for strange hadrons are poorly constrained

Strange hadron production in ep provides constrains of quark, antiquark and gluon contributions to the FFs

→ new HERA data may provide additional constrains

Measurements done in the current region of Breit frame

JHEP 1203:020,2012

Q² and x_p distribution: K⁰_s

AKK: Albino, Kniehl, Kramer DSS: DeFlorian, Sassot, Stratmann

MC - reasonable shape description

 NLO QCD+FF predictions fail to describe the data.
 DSS is better at medium x_p and low

 Q^2 , while AKK at high Q^2

- similar conclusions for Λ

Strangeness production in DIS at HERA

x_{p} distribution: comparison K^{0}_{s} and Λ to inclusive data

JHEP 1203:020,2012

 Inclusive charged-particle and neutral-strange-hadron data show a plateau for Q² > 100 GeV²

 At low Q² (and low x_p) mass effects visible

Conclusions

<u>K⁰</u> production:

- MEPS(Rapgap) reasonable description of the data in Q², $\eta~$ but softer p_{T} spectrum
- CDM(Django) reasonable in shape, but below the data
- K_{s}^{0}/h^{\pm} ratio shows large sensitivity to value of λ_{s} MEPS(Rapgap) - larger K_{s}^{0}/h^{\pm} yields for $\lambda_{s} = 0.286$ then measured - good description for large p_{T} CDM(Django) - good description in K_{s}^{0}/h^{\pm} yield for $\lambda_{s} = 0.286$ - good description at small p_{T}

<u>Λ production:</u>

- The measured visible cross section at high Q² is described best by CDM using λ_s = 0.220 and MEPS using $\,\lambda_s$ = 0.286
- (A– $\overline{\Lambda}$) asymmetry is found to be consistent with zero

Scaled momentum distribution of K_{S}^{0} and Λ :

- Scaling violation observed
- NLO QCD calculations with recent fits of FFs do not describe the data
 - → the HERA data have potential to further constrain fragmentation functions for the strange hadrons

Armen Buniatyan

Strangeness production in DIS at HERA

PHOTON-2013

Q^2 and x_p distribution: Λ

MC provide reasonable description