3rd CERN-ECFA-NuPECC Workshop on the Design of the LHeC 12-13.11.2010, Chavannes-de-Bogis

Tagging very forward neutral particles at the LHeC (Zero Degree Calorimeter)

Armen Bunyatyan

Introduction

Investigate the feasibility for the detector for the very forward neutral particles.

In ep collisions these forward particles are produced at a very small angles from the proton fragmentation or from the exchange mechanism (π +, Reggeon, ...):

fragmentation of proton remnant

particle <u>exchange</u> (proton emits a virtual particle-e.g. π + - which undergoes DIS with virtual photon)

At HERA, both experiments had the Forward Neutron Calorimeters (FNC); ~5% of DIS events contain neutron or photon in FNC

Physics potential of ZDC calorimeter

- pion structure, absorptive /gap survival effects (for F_2^{π} - an order of magnitude lower β than at HERA)
- colour single exchange, diffractive scattering
- QED processes ($p \rightarrow p + \gamma$) (luminosity)
- Crucial in ed-scattering to tag spectator neutron, distinguish spectator and scattered neutrons

- Crucial in diffractive eA, to distinguish coherent from incoherent diffraction
- Measurements for cosmic ray data analysis proton fragmentation, forward energy and particle flows...
- New forward physics phenomena

At HERA, both experiments had FNC calorimeters. At the LHC, Alice, ATLAS, CMS and LHCf experiments have ZDC. HERA case: Acceptance for forward neutrons vs $x_L = E_n / E_p$ and t

Acceptance is defined by the geometry of beamline elements

ZDC for the LHeC

4

[for the detector at z~100m:

H1 and ZEUS detectors for forward neutrons

Acceptance limited by beam apertures to θ <0.75-0.8 mrad, asymmetric in ϕ p_T resolution is dominated by p_T spread of proton beam (50-100 MeV)

ZDC for the LHeC

Acceptance for forward neutral particles at LHEC

Schematic Layout of LHeC IR

Ring-ring option High lumi, 10⁰ detector acceptance 2 mrad crossing angle Present layout has 1.5 mrad crossing angle

ZDC for the LHeC

Acceptance for forward neutrons vs energy for LHeC (7000 GeV x 70 GeV)

Look at neutron energy distributions depending on accessible angular range assume neutron calorimeter at ~100m:

1mrad is ±10cm ;

0.1mrad is ±1cm;

ZDC for the LHeC

Acceptance for forward neutrons vs t for LHeC

Look at *t* distributions depending on accessible angular range

Angular acceptance for forward neutrons vs energy for LHeC

0.75 mrad aperture cut at HERA corresponds to 0.1 mrad at LHeC ! With ~ \pm 3cm we can get quite reasonable acceptance, >90% for \times_{L} >0.3, |t|<3 GeV²

*Applying enerrgy resolution of 10% and x/y spread of 3mm doesn't change the conclusions

- Detector design: general considerations
- Geometric constraints- depends on the available space and angular aperture
 →need detailed info/simulation of beam-line
- Requirement to the calorimeter: 0°; identify $\gamma(\pi^0)$,n; measure energy and position of n and γ with reasonable resolution; reconstruct >1 particles, evtl. reconstruct $\pi^0 \rightarrow 2\gamma$; control beam position and beam spot during data taking Very radiation resistant
- e/m (1.5-2λ) and hadronic (~7-8λ) sections
 transverse size ~3λ (to contain 85-90% of shower) e/m section with fine segmentation to reconstruct the impact point long.segmnetation to control radiation damage

Experience from LHC, RHIC - sampling hadron calorimeter: absorber-W plates, active media - quartz fibers or THGEM Tungsten/Cherenkov detectors are fast (signal formation), rad.hard and have good energy resolution; narrow visible showers (reasonable resolution in limited space)

ZDC at the LHC detectors

Alice

Armen Bunyatyan

ZDC for the LHeC

Chavannes-de-Bogis, 12-13.11.2010

Calibration

Need on-line gain monitoring, relative and absolute calibration

Neutron spectra from beam-gas interaction ? Invariant masses $\pi^0 \rightarrow 2\gamma$, $\Lambda, \Delta \rightarrow n\pi^0$ (?)

Moreover, to worry about

-Background rate (beam-gas), pileup -How large is (how well is known) the proton beam spread and 0° direction at IP ? -Beam emittance, divergence \rightarrow main limitation for t (p_T) resolution

Zero Degree Calorimeter - important part of the future ep(ed,eA) detector.

For LHeC energies, we may have quite reasonable energy acceptance for forward neutrons with the calorimeter at ~100m and transverse acceptance of up to 3cm

Requirement to the calorimeter: measure energy and position of neutrons and photons with a reasonable resolution, identify $\gamma(\pi^0)$,n; reconstruct >1 particles ; radiation hard

Detector design - challenging task ! Based on the experience from FNC/ZDC calorimeters at the LHC, HERA and RHIC, explore novel methods

Next steps: clarify the geometrical constraints; Investigate the possible design options.