
B. List 30.7./1.8.2007 An Introduction to C++ Page 1

An Introduction to C++

Benno List

DESY Summer Students Tutorial

30.7 and 1.8.2007

B. List 30.7./1.8.2007 An Introduction to C++ Page 2

Introduction I

FORTAN C++

● C++ is one of the most complicated programming languages
around

● FORTRAN is like a VW beetle:
simple, reliable, easy to master

● C++ is like a Formula 1 racer:
incredibly powerful, but difficult to drive

B. List 30.7./1.8.2007 An Introduction to C++ Page 3

Introduction II

● The best way to learn programming is to look at programs

● I'll show many code examples

● In your work, you will mostly start with an example program and
adapt it to your needs

– I concentrate on showing you how to understand what existing programs do

– Programming languages are like all languages:
You cannot write if you can't read!

● For reasons of space, examples are ususally not production-quality
code!

– I often omiss (essential!) error checking

– I often prefer simple code over the most concise code

– Sometimes I avoid syntactic complications (omit “const”, don't use references)
for the sake of brevity and clarity

B. List 30.7./1.8.2007 An Introduction to C++ Page 4

Hello, World!

Our first C++ program:

file: hello.C

#include <iostream>

using namespace std;

int main() {
 cout << “Hello, World!\n”;
 return 0;
}

In the shell:

$> g++ -o hello hello.C
$> ./hello
Hello, World!
$>

Reads in file “iostream”, which declares cout

Without this, we would have to write std::cout

This is the main program, returning an integer
Prints out “Hello, World”, “\n” ends the line
returns “0” to the shell: no error

g++ is the compiler, hello is the excutable file
execute “hello”
yes, it works!

Note: C++ is case-sensitive:
cout, Cout and COUT are 3 different things!

Note: a semicolon ends each statement.

B. List 30.7./1.8.2007 An Introduction to C++ Page 5

Declares the function:
 function takes one argument “radius” of
type “double”, returns a “double” value

Functions

● In C++: almost everything returns a value
=> no “SUBROUTINE”s in C++, only “FUNCTION”s

● No implicit typing, every function and variable has to be declared

file: area.h

double area (double radius);

file: area.C

#include “area.h”

double area (double radius) {
 double result = 3.14159276*
 radius*radius;
 return result;
}

Includes the declaration file

Defines the function

Note: linebreaks are allowed almost
everywhere

B. List 30.7./1.8.2007 An Introduction to C++ Page 6

Using Functions
file: calcarea.C

#include <iostream>
using namespace std;
#include “area.h”

int main() {
 cout << “Enter radius: ”;
 double radius;
 cin >> radius;
 cout << “Area of circle with radius “
 << radius << “ is “
 << area (radius) << endl;
 return 0;
}

In the shell:

$> g++ -o calcarea calcarea.C area.C
$> ./calcarea
Enter radius: 1.5
Area of circle with radius 1.5 is 7.06858
$>

Includes the declaration files

Note: <> for standard headers,
 “” for user headers!

cin reads from standard input

B. List 30.7./1.8.2007 An Introduction to C++ Page 7

Basic Types

● Some of the types available in C++

C++ Type Meaning Size Range (appr.) Resolution
int, long Integer 32 bit ±2147483648 1

float Floating-point 32 bit

double Floating-point 64 bit
bool Boolean value 32 bit (!) false, true
char Character, integer 8 bit -128 - 127 1
short Integer 16 bit ±32768 1

long long Integer 64 bit 1

±3∙10±38 1∙10-7

±2∙10±308 2∙10-16

±9∙1018

B. List 30.7./1.8.2007 An Introduction to C++ Page 8

Operators I: Arithmetic operators

● Arithmetic operators:

note: no exponentiation! use “pow” function

● Assignment: = evaluates right side, assigns value to left side
double radius = 1.5;
double result = 3.14159276*radius*radius;
int i = 1;
i = i + 1; // now i is 2!

Operator Meaning
- Sign Change
* Multiplication
/ Division
% Modulus
+ Addition
- Subtraction

B. List 30.7./1.8.2007 An Introduction to C++ Page 9

Operators II:

● Special cases:

int i = 1;

i += 1;
i *= 3;
++i;

int j = ++i;

j = i++;

● The operators “+=”, “*=” etc work also for float, double etc.

● Precedence as usual, evaluation from left to right:
a = b+2*-c +d%e; is same as
a = (b+(2*(-c))) +(d%e);

same as i = i+1; now i is 2
same as i = i*3; now i is 6
increments i. Now i is 7.

assigns new value of i to j. => j is now 8.
 called “pre-increment”
assigns old value to k. => k is now 8, but i is 9!
 called “post-increment”

B. List 30.7./1.8.2007 An Introduction to C++ Page 10

Operators III: Relational Operators

● Relational (comparison) operators: return “false” or “true”

● Careful: “==” is a comparison, “=” is an assignment!

● In C/C++, an assignment has also a value: the assigned value:
a = (b = 7) + 1; is legal (b becomes 7, a becomes 8)

● Therefore: if (a=7)... is also legal, but not what you want!

Operator Meaning
== Equal
!= Not equal
< Less than
<= Less or equal
> Greater than
>= Greater or equal

B. List 30.7./1.8.2007 An Introduction to C++ Page 11

Operators IV: Logical Operators

● Logical operators: used for boolean expressions

● Bitwise operators: Perform bit-by-bit operations on integer types

● Careful! Don't confuse logical and bitwise operators!
integers can be converted to bool: 0 is false, everything else is true
=> 7 && 8 is true, 7 & 8 is 0 is false!

Operator Meaning
! Not
!= Exclusive or
&& And
|| Or

Operator Meaning
~ Bitwise complement
& Bitwise and
^ Bitwise exclusive or
| Bitwise or

B. List 30.7./1.8.2007 An Introduction to C++ Page 12

Operators V: Input and Output

#include <iostream>

using namespace std;

int main() {
 int i;
 double d;
 cout << “Enter an integer and a double: “;
 cin >> i >> d;
 cout << “The integer is “ << i
 << “ and the double is “ << d << endl;
 cerr << “This is an error message\n”;
 return 0;
}

Every UNIX program has 3 pre-defined inputs/outputs:
cin is the standard input.
cout is the standard output.
cerr is the error output.

“<<” is the output operator.
“>>” is the input operator.

B. List 30.7./1.8.2007 An Introduction to C++ Page 13

Numerical Functions

● Available from <cmath>
Don't forget “using namespace std;”!

Function Meaning Remark
sin(x) Sine
cos (x) Cosine
tan (x) Tangent
asin(x) Arc sine
acos(x) Arc cosine
atan(x) Arc tangent

atan2(x,y) Arc tangent (x/y)
exp(x) Exponential
log(x) Natural logarithm
log10(x) Logarithm, base 10
abs(x) Absolute value
sqrt(x) Square root

pow (x, y) x to the power y only for x >= 0
pow (x, i) x to the integer power ialso for x<0

-π/2 < Result < π/2
-π < Result < π

B. List 30.7./1.8.2007 An Introduction to C++ Page 14

Type Conversions I: Automatic Conversions

C/C++ has many pre-defined type conversions that are applied
automatically, when necessary:

● integer types (int, short, char, long long) to floating point types (float, double):
gives the same number
careful: for large integers, the conversion is not exact!

● floating point types to integer types:
the number is truncated (not rounded!) towards 0:
1.3 -> 1, 1.7 -> 1, -1.8 -> -1

● Number types to bool: 0 -> false, non-zero -> true

● arithmetic expressions between integers result in integers:
7/3 -> 2, 4/5 -> 0

● arithmetic expressions between floats (and integers) result in floats:
1.3*5 -> 6.5, 4.0/5 -> 0.8, 4/5.0 -> 0.8

● Arguments of arithmetic functions are (often) automatically converted:
sqrt (2) -> 1.41

B. List 30.7./1.8.2007 An Introduction to C++ Page 15

Type Conversions II: Casts

You can explicitly ask for a type conversion.
This is called a cast. (Like “casting bronze”)

● C-style casts: (type)expression:

double d = 3.7;
int i = (int)d * 2; // i is 3*2=6, not 7!

– discouraged!!! hard to read, ambiguous

● C++ style casts:

int i = static_cast<int>(d) * 2;

– the recommended form.

– other casts exist (dynamic_cast, reinterpret_cast, static_cast)

B. List 30.7./1.8.2007 An Introduction to C++ Page 16

Control Strutures I: If-then-else
double maximum (double a, double b) {
 double result;
 if (a > b) {
 result = a;
 }
 else {
 result = b;
 }
 return result;
}
double maximum (double a, double b) {
 double result;
 if (a > b) result = a;
 else result = b;
 return result;
}
double maximum (double a, double b) {
 double result = (a > b) ? a : b;
 return result;
}
double maximum (double a, double b) {
 return (a > b) ? a : b;
}

● condition in parantheses after “if”
● note: result must be declared before the if-block
● multiple statements after if() and else must be

enclosed in curly braces.

for single statements after if()
and else, we don't need the curly
braces. (But use them anyway!)

“? :“ is a special operator (taking
three arguments), especially for
cases such as this one.

 The variable result is unnecessary.

Note: no semicolon needed (but allowed)
after curly braces

B. List 30.7./1.8.2007 An Introduction to C++ Page 17

Control Structures II: while, do-while

double power (double x, int n) {
 // evaluates x^n, for nonnegative n
 double result = 1;
 int i = 0;
 while (i < n) {
 result *= x;
 ++i;
 }
 return result;
}

double exponential (double x) {
 /* calculates exp(x)
 exp (x) = 1 + x + x^2/2 + ... x^i/i! */
 double result = 1, xx = 1;
 int i = 1;
 do {
 xx *= x/i;
 result += xx;
 ++i;
 } while (xx > 0.0000001 * result);
 return result;
}

● This block is executed only if i<n;
once i >= n, go to next statement

● Block may be executed 0 times (for n == 0)

By the way: This is a single-line comment

By the way: This is a multi-line
comment

● This block is repeated as long as
xx > 0.0000001 * result.

● Block is executed at least once!

B. List 30.7./1.8.2007 An Introduction to C++ Page 18

Control Structures III: for

double power (double x, int n) {
 // evaluates x^n, for nonnegative n
 double result = 1;
 int i = 0;
 while (i < n) {
 result *= x;
 ++i;
 }
 return result;
}

double power (double x, int n) {
 // evaluates x^n, for nonnegative n
 double result = 1;
 for (int i = 0 ; i < n ; ++i) {
 result *= x;
 }
 return result;
}

● A for-loop is exactly equivalent to
a while-loop

● Just a convenient short-hand
notation

B. List 30.7./1.8.2007 An Introduction to C++ Page 19

More Complicated Data Structures: Classes I

file Vector.h:

class Vector {
 public:
 double x, y, z;
};

file calcVectorLength.h:

double calcVectorLength (Vector v);

file calcVectorLength.C:

#include “Vector.h”
include <cmath>
using namespace std;

double calcVectorLength (Vector v) {
 return sqrt (pow (v.x, 2) +
 pow (v.y, 2)+pow (v.z, 2));
}

Note: Here the semicolon is mandatory!!!

● In a class, several variables (“data
members”) can be grouped togther

● “public” means: other parts of the
program may access the variable

● A class creates a new variable type!

Here we have to pass only one variable of
type Vector, instead of 3

B. List 30.7./1.8.2007 An Introduction to C++ Page 20

Classes II

#include “Vector.h”
#include “calcVectorLength.h”
#include <iostream>
using namespace std;

int main() {
 Vector v;
 cout << “Enter three vector components:”;
 cin >> v.x >> v.y >> v.z;
 cout << “Length of this vector is “
 << calcVectorLength (v) << endl;
 Vector w = v;
 cout << “Length of vector w is “
 << calcVectorLength (w) << endl;
 return 0;
}

● Creates a Vector named v.
● Reads in the components:

v.x is x-component of v!
● Calculates the length.
● Creates a new Vector w, which is a

copy of v.

Critique:
● Need extra files for calcVectorLength
● How can I create a Vector with defined (x, y, z) in a single step?

B. List 30.7./1.8.2007 An Introduction to C++ Page 21

Classes III: Function Members / Methods

file Vector.h:

class Vector {
 public:
 Vector (double x_, double y_, double z_);
 double length();
 double x, y, z;
};

file Vector.C:

#include “Vector.h”
#include <cmath>
using namespace std;

Vector::Vector (double x_, double y_, double z_) {
 x = x_; y = y_; z = z_;
}

double Vector::length() {
 return sqrt (pow (x, 2) + pow (y, 2)+pow (z, 2));
}

● This is a “constructor”
● This calculates the length of a

Vector; it is a function: therefore
the “()”, but takes no arguments

Note: Here we really need the header file,
because it declares the layout of the class

Note: in the definition of the function
outside the “class Vector {};”, we
have to give the class name explicitly

Here we use x, y, z directly, without any “v.”!

B. List 30.7./1.8.2007 An Introduction to C++ Page 22

Classes IV
file vectorlength.C:

#include “Vector.h”
#include <iostream>
using namespace std;

int main() {
 double x, y, z;
 cout << “Enter three vector components:”;
 cin >> x >> y >> z;
 Vector v (x, y, z);
 cout << “Length of this vector is “
 << v.length() << endl;
 Vector w = v;
 cout << “Length of vector w is “
 << w.length() << endl;
 return 0;
}

● Now we can also create a Vector
directly from its components, using
the constructor

● Calculates the length.

Critique:
● Maybe storing x, y, z is very inefficient? Maybe we prefer polar coordinates?

B. List 30.7./1.8.2007 An Introduction to C++ Page 23

Classes V: Private

file Vector.h:

class Vector {
 public:
 Vector (double x_, double y_, double z_);
 double length();
 private:
 double r, phi, theta;
};

file Vector.C:

#include “Vector.h”
#include <cmath>
using namespace std;
Vector::Vector (double x_, double y_, double z_) {
 r = sqrt (pow (x_, 2) + pow (y_, 2)+pow (z_, 2));
 phi = atan2 (y_, x_);
 theta = (r > 0) ? acos (z_/r) : 0;
}
double Vector::length() {
 return r;
}

● Now we have spherical
coordinates.

● The coordinates may not be
accessed from outside the class
anymore: they are private!

● Now the constructor is much
more complicated.

● But calculating the length is
easy!

B. List 30.7./1.8.2007 An Introduction to C++ Page 24

Classes VI

#include “Vector.h”
#include <iostream>
using namespace std;

int main() {
 double x, y, z;
 cout << “Enter three vector components:”;
 cin >> x >> y >> z;
 Vector v (x, y, z);
 cout << “Length of this vector is “
 << v.length() << endl;
 Vector w = v;
 cout << “Length of vector w is “
 << w.length() << endl;
 return 0;
}

What has changed in our main
program?

NOTHING! It still works!

This is GREAT!

This concept is
so great,it even

has a name: It is called

Encapsulation
Note: old routine

calcVectorLength does not work
anymore, because it accesses
the data members of Vector
directly!

B. List 30.7./1.8.2007 An Introduction to C++ Page 25

Reflection on Objects and Classes

● Objects: Instances of class variables:
 Vector is a class, v is an Obect

● With classes, we have

– a close coupling between data and functions that work on the data

– the possibility to hide how some piece of code works, we see only what it does

– the possibility to divide our code
into many small pieces
that are individually simple and
therefore well to maintain

● Object Oriented Programming
is the modern way to write
programs

B. List 30.7./1.8.2007 An Introduction to C++ Page 26

The Illusion of Simplicity

B. List 30.7./1.8.2007 An Introduction to C++ Page 27

More on Compiling

● Compiler g++: Translates source code (text file) into machine code

● 2 Steps: Compiling and Linking

● Output of compiling step: .o files (object files):
 $> g++ -c Vector.C
 $> g++ -c vectorlength.C
produces files Vector.o and vectorlength.o

● Output of linking step: executable (no extension)
 $> g++ -o vectorlength vectorlength.o Vector.o
combines the object files vectorlength.o and Vector.o into
the executable file vectorlength

● In the linking step, also source files may be used, e.g.
 $> g++ -o vectorlength vectorlength.C Vector.o

B. List 30.7./1.8.2007 An Introduction to C++ Page 28

Archives

● Problem: If we have hundreds of object files, the linking commands gets
veeeeeeeery long

● Solution: Collect all the object files (usually without object files that
contain a main() function) in an archive
 $> ar r libmyroutines.a Vector.o area.o

● Now file libmyroutines.a contains the files Vector.o and area.o;
they can be listed with:
 $> ar t libmyroutines.a
 Vector.o
 area.o

● We can use the archive in the linking step:
 $> g++ -o vectorlength vectorlength.C libmyroutines.a

● Alternatively:
 $> g++ -o vectorlength vectorlength.C -L. -lmyroutines

B. List 30.7./1.8.2007 An Introduction to C++ Page 29

Recompilation

● Second Problem: If we have hundreds of source files and object
files, re-compilation of all routines can take a lot of time

● But if we change Vector.C, why should we recompile area.C?
This is unnecessary!

● Solution: we recompile only Vector.C and replace it in the archive:
 $> g++ -c Vector.C
 $> ar r Vector.o libmyroutines.a
The “r” option (without a “-”) tells ar to replace Vector.o in
libmyroutine.a

B. List 30.7./1.8.2007 An Introduction to C++ Page 30

make

●Third Problem: After an editing session, I may have changed 7 out of
150 .C files. It is very tedious to find out which files to recompile and
to do it by hand. Solution: The make utility

file Makefile:

OBJS=Vector.o area.o
libmyroutines.a: $(OBJS)

ar r libmyroutines.a $(OBJS)
.C.o:

g++ -c $< $(CFLAGS)
vectorlength: vectorlength.C libmyroutines.a

g++ -o vectorlength vectorlength.C
 -L. -lmyroutines
Vector.o: Vector.h
area.o: area.h

● Now we can enter in the shell:
$> make vectorlength
g++ -c Vector.C
g++ -c area.C
ar r libmyroutines.a Vector.o area.o
g++ -o vectorlength vectorlength.C -L. -lmyroutines
$>

OBJS is a variable that contains the name of the
object files we want to have in the library.

This line says that libmyroutines.a depends
on all object files. If any of the object files has
changed (is newer than libmyroutines.a),
the library has to be recreated.

This line say how to recreate libmyroutines.a.
Note that the command has to be preceeded
by a “tab” character, which can be very clumsy
to enter in some editors! (^I sometines
works)

This is a “suffix rule”: It tells make how to make
a .C file into an .o file. $< stands for the .C file.

This line says that Vector.o also depends on
Vector.h , not only on Vector.C

B. List 30.7./1.8.2007 An Introduction to C++ Page 31

Getters and Setters

class Vector {
 public:
 Vector (double x_, double y_, double z_);
 double length() const;
 double getX() const;
 double getY() const;
 double getZ() const;
 void setX (double newx);
 private:
 double r, phi, theta;
};

Vector::getX() const {
 return r*cos(phi)*sin(theta);
}

Vector setX (double newx) {
 double newy = getY();
 double newz = getZ();
 r = sqrt (newx*newx + newy*newy + newz*newz);
 phi = atan2 (newy, newx);
 theta = (r > 0) ? acos (newz/r) : 0;
}

By using “Getter” and “Setter” methods
instead of allowing direct access to the
data members, we “decouple” the class
Vector from its “clients”, i.e. from the
code that uses Vector objects.

If we now want to go back to a Vector
representation which internally uses x, y,
z, we have to change only code in the
files Vector.h and Vector.C. The
potentially hundreds of files in which we
use Vector objects can stay
unchanged!

This “const” means that getX() does
not change the Vector object.

We'll hear more about that later.

B. List 30.7./1.8.2007 An Introduction to C++ Page 32

A more complicated class: Particle

file Particle.h:

#include “Vector.h”

class Particle {
 public:
 Particle();
 Particle (Vector v_, double m_);
 Vector getMomentum() const;
 double getEnergy() const;
 double getInvariantMass () const;
 double getInvariantMass (Particle p);
 private:
 double px, py, pz, m, e;
};

– invariant mass of particle itself
– invariant mass of combination with

another particle

Note: we can have several functions
with the same name, but different arguments,
that do different things!
(This is forbidden in C!)
This is called (function) overloading.

– This is called the “default constructor”

B. List 30.7./1.8.2007 An Introduction to C++ Page 33

Several Particles: Arrays

Problem: in general, we have several particles in an event
file particlearray.C:

#include “Vector.h”
#include “Particle.h”
#include “fillParticles.h”
#include <iostream>
using namespace std;

int main() {
 Particle allParticles[100];
 int n = fillParticles (allParticles);

 for (int i = 0; i < n; ++i) {
 for (int j = i+1; j < n; ++j) {
 cout << “Invariant mass of particles “ << i
 << “ and “ << j << “ is “
 << allParticles[i].getInvariantMass (allParticles[j])
 << endl;
 }
 }
}

allParticles is an array with 100
Particles.

fillParticles somehow fills the
array, and returns the number of
particles.

Indices start at 0 in C++!

For an array with 100 elements, valid index values are 0 to 99.

B. List 30.7./1.8.2007 An Introduction to C++ Page 34

Pointers

● A Pointer points to some object anywhere in memory: It contains
only the object's memry address, but knows to what kind (class) of
object it points to

● We can use this to refer to other objects

● Example: Decay K0
S -> π+π- : we want to point to the 2 possible

decay pions, and we may have several pion pairs sharing the same
pion candidate

An english pointer The Pointer Sisters Another Pointer
Pointers can be dangerous!!!

“For God's sake, Edwards, put the
laser pointer away!”

B. List 30.7./1.8.2007 An Introduction to C++ Page 35

piplus is a pointer to a Particle object.
Read: “*piplus is a Particle”.

Example: A K0S class

#include “Particle.h”

class K0SParticle {
 public:
 K0SParticle (Particle *piplus_, Particle *piminus_);
 getInvariantMass() const;

 private:
 Particle *piplus;
 Particle *piminus;
};

K0SParticle::K0SParticle (Particle *piplus_, Particle *piminus_) {
 piplus = piplus_;
 piminus = piminus_;
}

K0SParticle::getInvariantMass() const {
 return (*piplus).getInvariantMass (*piminus);
} *piplus is the object itself.

pointers can be copied without copying
the object to which they point

B. List 30.7./1.8.2007 An Introduction to C++ Page 36

Using the Kshort class

#include “Vector.h”
#include “Particle.h”
#include “K0SParticle.h”
#include <iostream>
using namespace std;

int main() {
 Particle allParticles[100];
 int n = fillParticles (allParticles[100]);

 for (int i = 0; i < n; ++i) {
 for (int j = i+1; j < n; ++j) {
 K0SParticle k0s (&(allParticles[i]), &(allParticles[j]));
 cout << “Invariant mass of K0S is “
 << k0s.getInvariantMass() << endl;
 }
 }
}

Critique:
● How can we store our good K0S candidates? We don't know how many we will get!
● A K0S is also a Particle. It also has similar functions, like getInvariantMass().

Can we somehow unify Particle and K0SParticle?

k0s is created
here.

k0s is destroyed here!
(“it goes out of scope”)

B. List 30.7./1.8.2007 An Introduction to C++ Page 37

Storing the Kshort Candidates

int main() {
 Particle allParticles[100];
 int n = fillParticles (allParticles);
 K0SParticle *allKshorts[10000];

 for (int i = 0; i < 10000; ++i) allKshorts[i] = 0;
 int k0sNumber = 0;
 K0SParticle *k0s;

 for (int i = 0; i < n; ++i) {
 for (int j = i+1; j < n; ++j) {
 k0s = new K0SParticle(&(allParticles[i]), &(allParticles[j]));
 if (abs (k0s->getInvariantMass() - 0.493) < 0.05) {
 allKshorts[k0sNumber] = k0s;
 ++k0sNumber;
 }
 else {
 delete k0s;
 }
 }
 }
 cout << “We have found “ << k0sNumber << “ Kshort candidates.\n”;
}

Note: k02->getInvariantMass()
is just shorthand for
(*k02).getInvariantMass()

A new K0SParticle is created
here, k0s points to it.

We keep the good Kshort candidates

...and throw away the bad Kshort candidates!

B. List 30.7./1.8.2007 An Introduction to C++ Page 38

A K0SParticle is also a Particle

#include “Particle.h”

class K0SParticle: public Particle {
 public:
 K0SParticle (Particle *piplus_, Particle *piminus_);
 getInvariantMass();

 private:
 Particle *piplus;
 Particle *piminus;
};

A This means that a K0SParticle
is also a Particle.

This is called Inheritance.

The class “Particle” is called the base class of class “K0SParticle”.

Class “K0SParticle” is a subclass of class “Particle”.
It “inherits” from class Particle, which is the superclass.

This is the “UML Diagram” for this relationship →

“UML” stands for “Unified Modeling Language”

Particle

K0SParticle

B. List 30.7./1.8.2007 An Introduction to C++ Page 39

Inheritance

class Particle {
 public:
 double getPt() { return sqrt(px*px+py*py); }
 double getPhi() { return atan2(py, px); }
 double getInvariantMass() { return sqrt (e*e-px*px-py*py-pz*pz); }
 protected:
 double e, px, py, pz;
};

class K0SParticle: public Particle {
 public:
 K0SParticle (Particle *piplus_, Particle *piminus_) {
 piplus = piplus_;
 piminus = piminus_;
 e = piplus->e + piminus->e;
 px = piplus->px + piminus->px;
 py = piplus->py + piminus->py;
 pz = piplus->pz + piminus->pz;
 }
 private:
 Particle *piplus;
 Particle *piminus;
};

“protected” means
“private, but may be accessed from subclasses”.

Here we set the properties that are specific for a
K0SParticle, and those inherited from
Particle.

Class K0SParticle inherits e, px, py, pz
from class Particle!

K0SParticle also inherits getPt(),
getPhi(), getInvariantMass() from
Particle!

B. List 30.7./1.8.2007 An Introduction to C++ Page 40

Inheritance III

class Particle {
 public:
 virtual Particle *getDaughter (int i) {
 return 0;
 }
 //...
 protected:
 double e, px, py, pz;
};

class K0SParticle: public Particle {
 public:
 virtual Particle *getDaughter (int i) {
 if (i == 0) return pipus;
 else if (i == 1) return piminus;
 else return 0;
 }
 //...

 private:
 Particle *piplus;
 Particle *piminus;
};

A more generic Particle:
a particle may have daughter
particles into which it decays.

Normally, a particle has no
daughters.

A K0SParticle has 2 daughters, 0 and 1. Therefore
it overrides the method getDaughter from the
base class.

A new keyword.
“virtual” means that a subclass may implement

this method differently.

B. List 30.7./1.8.2007 An Introduction to C++ Page 41

A Simple Jet Class

class Jet: public Particle {
 public:
 Jet() {
 ndaughters = 0;
 }
 virual void addParticle (Particle *newDaughter) {
 if (nDaughters >= 100) {
 cerr << “Jet::addParticle: too many daughters!\n”;
 }
 else {
 allDaughters[nDaughters++] = newDaughter;
 e += newDaughter->e;
 px += newDaughter->px;
 py += newDaughter->py;
 pz += newDaughter->pz;
 }
 }
 virtual Particle *getDaughter (int i) {
 return (i >= 0 && i < nDaughters) ? allDaughters[i] : 0;
 }
 protected:
 int nDaughters;
 Particle *allDaughters[100];
};

A simple class for jets; jets are composed of
particles, but may also be treated as a pseudo-
particle (e.g. a quark!)

This is an array of pointers to Particles. Uff!

Typical C/C++: Doing 2 things at the
same time: assigning to
allDaughters[nDaughters],
incrementing nDaughters
afterwards.

B. List 30.7./1.8.2007 An Introduction to C++ Page 42

Using the Jet Class: A Jet Algorithm (à la JADE)

int findJets (Particle *particles[], int nParticles, double ycut, double s) {
 int imin, jmin;
 while (nParticles > 1) {
 double mmin = sqrt (s);
 for (int i = 0; i < nParticles; ++i) {
 for (int j = i+1; j < nParticles; ++j) {
 double m = particles[i]->getInvariantMass (particles[j]);
 if (m < mmin) {
 mmin = m; imin = i; jmin = j;
 }
 }
 }
 if (mmin*mmin < ycut*s) {
 Jet *jet = new Jet;
 jet->addParticle (particles[imin]);
 jet->addParticle (particles[jmin]);
 particles[jmin] = particles[--nParticles];
 particles[imin] = jet;
 }
 else break;
 }
 return nParticles;
}

Loop over all pairs of particles,
find the pair with the least invariant mass.
For this pair, store the indices i and j.

Combine particles imin and jmin into a new jet;
remove both particles from the list of particles:
 replace particle imin by the new jet,
 replace particle jmin by last particle in the list,
 decrease the number of particles by 1.

← This is the trick!
 Because a Jet is also a Particle,
 we may use it wherever a Particle is needed!

B. List 30.7./1.8.2007 An Introduction to C++ Page 43

Reflection

● We just saw great things a work:
One object behaving like an object from a different class!

● A Jet IsA special sort of Particle:
class Jet: public Particle {...};

● Therefore, wherever a Particle is needed, I can use a Jet!

● But a Jet also contains more information than an ordinary
Particle, e.g. the number of Particles that it is composed of.

● What happens to this additional information?
Jet *jet = new Jet;
Particle *part = jet;
Jet jetCopy = *jet;
Particle partCopy = *jet;

A pointer to a newly created Jet object
Another pointer, pointing to this object
A copy of the Jet object, with all the information
A copy of the Particle info of the Jet, i.e. only e, px, py, pz

B. List 30.7./1.8.2007 An Introduction to C++ Page 44

The Jet Algorithm at Work

Particle
e=1.2, px=0.7
py=-0.2, pz=0.3

Particle
e=2.7, px=0.8
py=0.5, pz=1.3 Particle

e=1.4, px=0.8,
pz=-0.1, pz=0.4

Particle
e=8.5, px=-1.2,
py=0.5, pz=-8.1 Particle

e=4.7, px=2.3,
py=-0.5, pz=3.0

Particle
e=1.4, px=-0.5,
py=0.3, pz=0.9

Particle
e=5.3, px=4.8,
py=0.2, pz=0.1

Particle
e=1.2, px=0.7
py=-0.2, pz=0.3

Particle
e=2.7, px=0.8
py=0.5, pz=1.3 Particle

e=1.4, px=0.8,
pz=-0.1, pz=0.4

Particle
e=8.5, px=-1.2,
py=0.5, pz=-8.1 Particle

e=4.7, px=2.3,
py=-0.5, pz=3.0

Particle
e=1.4, px=-0.5,
py=0.3, pz=0.9

Particle
e=5.3, px=4.8,
py=0.2, pz=0.1

Jet
e=2.6, px=1.5
py=-0.3, pz=0.7

nParticles = 7 nParticles = 6

allParticles allParticles

B. List 30.7./1.8.2007 An Introduction to C++ Page 45

Destructors

● After the Jet finder:
a complicated tree.

● All the objects use memory

● If we want to run the the jet
finder on many events, we
have to free the memory
again!

class Jet: public Particle {
 public:

 virtual ~Jet();
};

Jett::~Jet() {
 for (int i = 0; i < nDaughters; i++) {
 delete allDaughters[i];
 }
}

Particle
e=1.2, px=0.7
py=-0.2, pz=0.3

Particle
e=2.7, px=0.8
py=0.5, pz=1.3 Particle

e=1.4, px=0.8,
pz=-0.1, pz=0.4

Particle
e=8.5, px=-1.2,
py=0.5, pz=-8.1

Particle
e=4.7, px=2.3,
py=-0.5, pz=3.0

Particle
e=1.4, px=-0.5,
py=0.3, pz=0.9

Particle
e=5.3, px=4.8,
py=0.2, pz=0.1

Jet
e=2.6, px=1.5
py=-0.3, pz=0.7

nParticles = 4

allParticles
Jet

e=5.3, px=2.7
py=0.2, pz2.0

Jet
e=9.9, px=-1.7
py=0.8, pz=-7.2

~Jet() is the Destructor of class Jet.
It is called when a variable of class Jet goes out of scope,
or when we explicitly delete an objet of class Jet
which a pointer points to.
The destructor is used to “clean up”.

B. List 30.7./1.8.2007 An Introduction to C++ Page 46

Passing Arguments to Subroutines

● Normal case in C/C++: “Pass by Value”:

– Only the value of a variable is passed to a subroutine

– For objects: a copy is passed

– If we change the object, only a copy is changed => no effect for calling routine!

– If we pass an object of a subclass (Jet/Particle!), we lose information

Jet *jet = new Jet;
Particle *part = jet;
Jet jetCopy = *jet;
Particle partCopy = *jet;

● To pass “the object itself”, we can pass a pointer to the object:

– the value of the pointer is the the address of the object

– the pointer is copied, i.e. the address, but not the object pointed to!

Jet *jet = new Jet;
Particle *part = jet;
Jet jetCopy = *jet;
Particle partCopy = *jet;

B. List 30.7./1.8.2007 An Introduction to C++ Page 47

References

● Passing pointers is completely OK, but leads to clumsy notation:
void sort (double *d1, double *d2) {
 if (*d2 > *d1) {
 double d = *d1;
 *d1 = *d2;
 *d2 = d;
 }
}

int main() {
 double a = 2.3;
 double b = 5;
 sort (&a, &b);
 cout << “After sorting: “ << a “ <= “ b << endl;
}

● A reference is another name for an object:
int main() {
 double a = 2.3;
 double b = 5;
 double& c = a;
 a = 7.5;
 cout << “Value of c: “ << c << endl;
}

B. List 30.7./1.8.2007 An Introduction to C++ Page 48

References II

● With references, our sort function looks much nicer:
void sort (double& d1, double& d2) {
 if (d2 > d1) {
 double d = d1;
 d1 = d2;
 d2 = d;
 }
}

int main() {
 double a = 2.3;
 double b = 5;
 sort (a, b);
 cout << “After sorting: “ << a “ <= “ b << endl;
}

● References don't exist in C, only in C++

● Passing a reference is essentially like passing a pointer, but nicer:

– No copying is involved

– The reference behaves like the object itself

B. List 30.7./1.8.2007 An Introduction to C++ Page 49

const

● A function that takes a reference to an object can in principle
change the object

● Very often, we want to write functions that only “look” at an object,
i.e. get some properties of the object, but do not change the object.

● If we use “const”, we promise not to change the object:
double scalarProduct (const Vector& v1, const Vector& v2) {
 return v1.getX()*v2.getX()
 + v1.getY()*v2.getY()
 + v1.getZ()*v2.getZ();
}

● But how do we know that getX() does not change the Vector?
class Vector {
 public:
 ...
 double getX() const;
};

double Vector::getX() const {
 return r*cos(phi)*sin(theta);
}

The “const” tells the compiler that getX() may be used
for constant objects. It is a promise that getX() will not
change the object.

In the implementation file, the compiler will report an error if
we try to do anything that changes the object, e.g. write
 r = 1.7;

B. List 30.7./1.8.2007 An Introduction to C++ Page 50

Things we Have not Covered

● operator overloading

● templates

● the standard template library

● much much more...

I'll try to give you a flavour about these things in the next slides.

These things are very useful, but not trivial to use, because we have
not covered many technical details in this 2 day boot camp.

But let's see...

B. List 30.7./1.8.2007 An Introduction to C++ Page 51

A Flavour of Templates

file maximum.h:

template<class T>
T maximum (const T& a, const T& b) {
 return (a > b) ? a : b;
}

file trymaximum.C:

#include<iostram>
using namespace std;
#include “maximum.h”

int main() {
 double d1, d2;
 cout << “Enter two floating point numbers: “;
 cin >> d1 >> d2;
 cout << “The maximum of “ << d1 << “ and “
 << d2 << “ is “ << maximum (d1, d2) << endl;
 int i1, i2;
 cout << “Enter two integer numbers: “;
 cin >> i1 >> i2;
 cout << “The maximum of “ << i1 << “ and “
 << i2 << “ is “ << maximum (i1, i2) << endl;
 return 0;
}

This defines a generic “maximum” function for any data
type T that has a “>” operator.
Note that the complete definition is in the header file, there
is no .C file!

Here we use the new maximum function:

The compiler automatically creates a
maximum function from the template that
takes two doubles and returns a double.

The compiler automatically creates a different
maximum function that takes two integers and
returns an integer!

B. List 30.7./1.8.2007 An Introduction to C++ Page 52

A Flavour of Operator Overloading

file Vector.h:

class Vector {
 public:
 ...
 double getX() const;
 double getY() const;
 double getZ() const;
};

Vector operator+ (const Vector& lhs, const Vector& rhs);

file Vector.C:

double Vector::getX() const { return r*cos(phi)*sin(theta); }
Vector operator+ (const Vector& lhs, const Vector& rhs) {
 double x = lhs.getX() + rhs.getX();
 double y = lhs.getY() + rhs.getY();
 double z = lhs.getZ() + rhs.getZ();
 return Vector (x, y, z);
}

Now we can write:
 Vector v1 (1, 2, 3), v2 (-0.5, 2.3, 0);
 Vector w = v1 + v2;

The access functions are simple.

Here we declare the “+” operator for
two Vectors.

The “+” operator is also
straightforward

B. List 30.7./1.8.2007 An Introduction to C++ Page 53

A Flavour of the STL

● STL: Standard Template Library
file numbervector.C:

#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;

int main() {
 int n;
 cout << “Enter the number of elements: “;
 cin >> n;
 vector<double> allNumbers(n);
 for (int i = 0; i < n; i++) {
 cout << “Enter number “ << i+1 << “: ”;
 cin >> allNumbers[i];
 }
 sort (allNumbers.begin(), allNumbers.end());
 cout << “Here are all numbers in order: \n(”;
 for (int i = 0; i < allNumbers.size()-1; i++) {
 cout << allNumbers[i] << “, “;
 }
 cout << allNumbers[allNumbers.size()-1] << “)\n”;
 return 0;
}

vector<T> is a template type.
It stores elements of type T. Here T is a double.
Here we create a vector with n elements.

The vector behaves like an array, but it can be
copied, resized, sorted etc etc.

Here we sort the vector.

The vector knows its own size! Very useful...

B. List 30.7./1.8.2007 An Introduction to C++ Page 54

Reserve

RESERVE

B. List 30.7./1.8.2007 An Introduction to C++ Page 55

Operators I: Arithmetic operators

● Arithmetic operators:

note: no exponentiation (** in FORTRAN)! use “pow” function

● Assignment: = evaluates right side, assigns value to left side
double radius = 1.5;
double result = 3.14159276*radius*radius;
int i = 1;
i = i + 1; // now i is 2!

Operator Meaning FORTRAN
- Sign Change -
* Multiplication *
/ Division /
% Modulus MOD
+ Addition +
- Subtraction -

B. List 30.7./1.8.2007 An Introduction to C++ Page 56

Operators III: Relational Operators

● Relational (comparison) operators: return “false” or “true”

● Careful: “==” is a comparison, “=” is an assignment!

● In C/C++, assignment has also a value: the assigned value:
a = (b = 7) + 1; is legal (b becomes 7, a becomes 8)

● Therefore: if (a=7)... is also legal, but not what you want!

Operator Meaning FORTRAN
== Equal .EQ.
!= Not equal .NE.
< less than .LT.
<= less or equal .LE.
> greater than .GT.
>= greater or equal .GE.

B. List 30.7./1.8.2007 An Introduction to C++ Page 57

Operators IV: Logical Operators

● Logical operators: used for boolean expressions

● Bitwise operators: Perform bit-by-bit operations on integer types

● Careful! Don't confuse logical and bitwise operators!
integers can be converted to bool: 0 is false, everything else is true
=> 7 && 8 is true, 7 & 8 is 0 is false!

Operator Meaning FORTRAN
! not .NOT.
!= exclusive or .XOR.
&& and .AND.
|| or .OR.

Operator Meaning FORTRAN
~ complement INOT
& bitwise and IAND
^ bitwise exclusive or IEOR
| bitwise or IOR

B. List 30.7./1.8.2007 An Introduction to C++ Page 58

Numerical Functions

● Available from <cmath>
Don't forget “using namespace std;”!

Function Meaning FORTRAN Remark
sin(x) Sine SIN(X)
cos (x) Cosine COS(X)
tan (x) Tangent TAN(X)
asin(x) Arc sine ASIN(X)
acos(x) Arc cosine ACOS(X)
atan(x) Arc tangent ATAN(X)

atan2(x,y) Arc tangent (x/y) ATAN2 (X, Y)
exp(x) Exponential EXP(X)
log(x) Natural logarithm LOG(X)

log10(x) Logarithm, base 10 LOG10(X)
abs(x) Absolute value ABS(X)
sqrt(x) Square root SQRT(X)

pow (x, y) x to the power y X**Y only for x >= 0
pow (x, i) x to the integer power i X**I also for x<0

-π/2 < Result < π/2
-π < Result < π

