An Introduction to C++

Benno List

DESY Summer Students Tutorial

30.7 and 1.8.2007

B. List 30.7./1.8.2007 An Introduction to C++ Page 1

Introduction |

 C++ is one of the most complicated programming languages
around

* FORTRAN is like a VW beetle:
simple, reliable, easy to master

e C++ is like a Formula 1 racer:
incredibly powerful, but difficult to drive

FORTAN

B. List 30.7./1.8.2007 An Introduction to C++ Page 2

Introduction Il

* The best way to learn programming is to look at programs
* I'll show many code examples

* |[n your work, you will mostly start with an example program and
adapt it to your needs

- | concentrate on showing you how to understand what existing programs do

- Programming languages are like all languages:
You cannot write if you can't read!

* For reasons of space, examples are ususally not production-quality
code!

- | often omiss (essential!) error checking
- | often prefer simple code over the most concise code

- Sometimes | avoid syntactic complications (omit “const”, don't use references)

for the sake of brevity and clarity
B. List 30.7./1.8.2007 An Introduction to C++ Page 3

UH

Hello, World! "

m
Note: C++ is case-sensitive:

Our first C++ program: cout, Cout and COUT are 3 different things!I
file: hello. C
#i ncl ude <i ostreanr Reads in file “i ost r eani, which declares cout
usi ng nanmespace std,; Without this, we would have to write st d: : cout
int main() “{) This is the main program, returning an integer

SOl &S Hel I o, Worldi\n"; B Prints out “Hel | 0, Worl d”, “\ n” ends the line
; return O; returns “0” to the shell: no error
| . Note: a semicolon ends each statement.
n the shell: I
$> 9;’; IIO hello hello.C g++ is the compiler, hel | o is the excutable file
$H:| | o eW)?I " execute “hel | 0”
&> ’ ' yes, it works!

B. List 30.7./1.8.2007 An Introduction to C++ Page 4

Functions

* [In C++: almost everything returns a value
=>no “"SUBROUTINE"s in C++, only “‘FUNCTION"s

* No implicit typing, every function and variable has to be declared

file: ar ea. h

doubl e area (doubl e radius); IDeclares the function:
’ function takes one argument “r adi us” of

file: ar ea. C type “doubl e”, returns a “doubl e” value

#i ncl ude “area.h” Includes the declaration file

doubl e area (doubl e radius) { Defines the function
doubl e result = 3.14159276*

radi us*r adi us;

iU Tesul Note: linebreaks are allowed almost
) everywhere

B. List 30.7./1.8.2007 An Introduction to C++ Page 5

Using Functions

file: cal carea. C

#i ncl ude <i ostreanp Includes the declaration files
usi ng namespace std; é
#include "area.h Note: <> for standard headers,

int main() { “” for user headers!

cout << “Enter radius: ”;
doubl e radi us;
cin >> radi us;
cout << “Area of circle wth radius

<< radius << “ is ci n reads from standard input
<< area (I‘adl US) << endl; é

return O;

}

| n the shell;

$> g++ -0 calcarea calcarea.C area.C

$> ./cal carea

Enter radius: 1.5

Area of circle wiwth radius 1.5 is 7.06858

$>

B. List 30.7./1.8.2007 An Introduction to C++ Page 6

Basic Types

e Some of the types available in C++

C++ Type | Meaning Size |[Range (appr.) Resolution
int, |ong |Integer 32 bit | +2147483648 1

f| oat Floating-point 32 bit +3:10+38 11077
doubl e Floating-point 64 bit +2-10%308 2-10°16
bool Boolean value 32 bit (1) false, true

char Character, integer | 8 bit -128 - 127 1
short Integer 16 bit +32768

| ong | ong |Integer 64 bit +9-1018 1

B. List 30.7./1.8.2007 An Introduction to C++ Page 7

Operators |: Arithmetic operators

* Arithmetic operators:

Operator Meaning
- Sign Change
* Multiplication
/ Division
% Modulus
+ Addition
- Subtraction

note: no exponentiation! use “pow” function

e Assignment: = evaluates right side, assigns value to left side
doubl e radius = 1.5;
doubl e result 3.14159276*r adi us*r adi us;
int i = 1;
I =1 + 1; [/l nowi is 2|

B. List 30.7./1.8.2007 An Introduction to C++ Page 8

Operators |I:

e Special cases:

int i = 1;

i 4= 1 sameasi = i+1; now i is?2

. x= 3. sameasi = i*3; now i is6

i increments i . Nowi is7.

int j = ++i assigns new valueofi to j. =>j is now 8.
’ called “pre-increment”

i =0 assigns old value to k. => k is now 8, buti is 9!

called “post-increment”

 The operators “+=", “* =" etc work also for f | oat , doubl e etc.

* Precedence as usual, evaluation from left to right:
a = b+2*-c +d%; IS same as
a = (b+(2*(-c))) +(d%);

B. List 30.7./1.8.2007 An Introduction to C++ Page 9

Operators lll: Relational Operators

* Relational (comparison) operators: return “false” or “true”

Operator | Meaning
== Equal
I = Not equal
< Less than
<= Less or equal
> Greater than
>= Greater or equal
e Careful: “=="is a comparison, “=" is an assignment! __

* [In C/C++, an assignment has also a value: the assigned value:
a=(b=7) + 1; is legal (b becomes 7, a becomes 8)

e Therefore: 1 f (a=7)... is also legal, but not what you want!

B. List 30.7./1.8.2007 An Introduction to C++ Page 10

Operators |V: Logical Operators

* | ogical operators: used for boolean expressions

Operator | Meaning
! Not
| = Exclusive or
&& And
| | Or

* Bitwise operators: Perform bit-by-bit operations on integer types

Operator | Meaning
~ Bitwise complement

& Bitwise and
N Bitwise exclusive or
| Bitwise or

e Careful! Don't confuse logical and bitwise operators!
integers can be converted to bool: O is false, everything else is true
=>7 && 8istrue,7 & 8is 0 is false!

B. List 30.7./1.8.2007 An Introduction to C++ Page 11

Operators V: Input and Output

#i ncl ude <i ostreanp
usi ng nanespace st d;
int main() {

I nt i
doubl e d;:

cout << “Enter an integer

cin >> | >> d;

cout << “The i nteger
<< “ and the double is “ << d << endl:
cerr << “This is an error

return O;

B. List 30.7./1.8.2007

Every UNIX program has 3 pre-defined inputs/outputs:
ci n is the standard input.

cout is the standard output.
cerr is the error output.

“<<”is the output operator.
“>>" s the input operator.

and a doubl e: *“;:
<< |

message\ n”;

An Introduction to C++ Page 12

Numerical Functions

e Available from <cmat h>
Don't forget “usi ng nanespace std; !

Function | Meaning Remark
si n(x) Sine
cos (x) Cosine
tan (X) Tangent
asi n(x) Arc sine
acos(x) Arc cosine
at an(x) Arc tangent -11/2 < Result < 11/2
at an2(x, y) | Arctangent (x/y) -T < Result < 11
exp(x) Exponential
| og(x) Natural logarithm
| 0g10(X) Logarithm, base 10
abs(x) Absolute value
sqrt (X) Square root
pow (X, V) |Xxtothe powery only for x >=0

pow (X, 1)

X to the integer power

also for x<0

B. List 30.7./1.8.2007

An Introduction to C++

Page 13

Type Conversions |I: Automatic Conversions

C/C++ has many pre-defined type conversions that are applied
automatically, when necessary:

* integer types (int, short, char, long long) to floating point types (float, double):
gives the same number
careful: for large integers, the conversion is not exact!

* floating point types to integer types:
the number is truncated (not rounded!) towards O:
1.3->1,1.7->1,-1.8-> -1

Number types to bool: 0 -> false, non-zero -> true

arithmetic expressions between integers result in integers:
713->2,4/5->0

arithmetic expressions between floats (and integers) result in floats:
1.3*5->6.5, 4.0/5->0.8,4/5.0->0.8

Arguments of arithmetic functions are (often) automatically converted:
sqrt (2) > 1.41

B. List 30.7./1.8.2007 An Introduction to C++ Page 14

Type Conversions |l Casts

You can explicitly ask for a type conversion.
This is called a cast. (Like “casting bronze”)

e C-style casts: (type)expression:

double d = 3. 7;
int 1 = (int)d* 2; // 1 Is 3*2=6, not 7!

- discouraged!!! hard to read, ambiguous

e C++ style casts:

int i = static_cast<int>(d) * 2;

- the recommended form.
— other casts exist (dynam ¢c_cast, reinterpret _cast, static_cast)

B. List 30.7./1.8.2007 An Introduction to C++ Page 15

Control Strutures I: If-then-else

doubl e maxi mum (doubl e a, double b) { I
doubl e resul t; o : £ o
if (a>b) { e condition in parantheses after “i f
result = a: e note: r esul t must be declared before the if-block
} e multiple statements afteri f () and el se must be
el se {

enclosed in curly braces.

result = b;

} Note: no semicolon needed (but allowed)
\ return result; after curly braces I

doubl e maxi mum (doubl e a, double b) { forsingle statements afteri f ()
doubl e result; and el se, we don't need the curly
T (a >b) result = a braces. (But use them anyway!)

el se result = b;
return result;

} “I? . k6t . .
TR T T © - s a special operator (taking
double result = (a > b) ? a : b; three arguments), especially for

return resul t; cases such as this one.

}

doubl e maxi num (doubl e a, double b) {

return (a > b) ? a: b; The variable r esul t is unnecessary.
} é
B. Lis NNIRS n Introduction to C++ Page 16

Control Structures Il: while, do-while

doubl e power (double x, int n) { [o _ _
/1 eval uates x~n, for nonnegative n BYthe way: Thisis a single-line comment
double result = 1; ﬁ
int i = 0;
while (i <n) {
result *= x: * This block is executed only if i<n;
++i ; once i >= n, go to next statement
} * Block may be executed 0 times (for n == 0)
return result;
}
doffl iafﬁﬂf’gfgts' :Lpgg;)um 29 By the way: This is a multi-line
exp (x) = 1 + x + x22/2 + ... xAi/i! */ comment
double result =1, xx = 1;
int 1 = 1;
do { b= /i * This block is repeated as long as
Ul t i xx > 0.0000001 * result.
4 ’ * Block is executed at least once!

} while (xx > 0.0000001 * result);
return result:

Page 17

Control Structures lll: for

doubl e power (double x, int n) {
/'l eval uates x”n, for nonnegative n
:1;

return result;

}

doubl e power (double x, jJint n)\{
/] eval uates x"n, forynonneg§ti ve n

doubl e re e Af or -loop is exactly equivalent to

= 1;
£5 ;(:>;@) { a whi | e-loop
resul t ==X, e Just a convenient short-hand
} notation

return result;

}

B. List 30.7./1.8.2007 An Introduction to C++ Page 18

More Complicated Data Structures: Classes |

* In a class, several variables (“data

file Vector. h: members”) can be grouped togther
o eEs Vesier * “public” means: other parts of the
publ i c: program may access the variable

double x, vy, z * A class creates a new variable type!

g | 2 Note: Here the semicolon is mandatory!!!
file caIcVéEP5FfEHﬂPH!HF------------I
doubl e cal cVect orLength (Vector v); I

file cal cVect or Lengt h. C;
#i ncl ude “Vector.h”

I ncl ude <cmat h>
usi ng nanespace std;

doubl e cal cVectorlLength (Vector v) { HEHere we have to pass only one variable of
return sart (pow (v.x, 2) + type Vect or , instead of 3
pow (v.y, 2)+pow (v.z, 2)); ’

}

0o C++ Page 19

Classes ||

#i ncl ude “Vector.h”
#i ncl ude “cal cVect orLengt h. h”
#i ncl ude <i ostreanp
usi ng nanespace std;

Int main() {
Vect or v;

cout << “Enter three vector conponents:”; |
cin >> v.X >> v.y >> V., Z; Creates a Vector named v.

cout << “Length of this vector is * * Reads in the components:
<< cal cVectorlLength (v) << endl; v.X is x-component of v!

Vector w = v; » Calculates the length.

cout << “Length of vector wis * * Creates a new Vector w, which is a
<< cal cVectorLength (w) << endl; copy of V.

return O;

Classes |ll: Function Members / Methods

file Vector. h:

cl ass Vector { 0
publ i c: * This is a “constructor”
Vector (double x_, double y , double z_); *® This calculates the length of a
doubl e | ength(); Vector; it is a function: therefore
. double x, y, z; the “()”, but takes no arguments

file Vector. C

Note: Here we really need the header file,

#i ncl ude “Vector. h” _
because it declares the layout of the class

#i ncl ude <cmat h>
usi ng nanespace std;

ect or (double x_, double y_, double z_) {

XL Y=Y, 2 =2, Note: in the definition of the function
) outside the “cl ass Vector {};7, we
doubl e Vector::|ength() { have to give the class name explicitly

return sqrt (pow (x, 2) + pow (Y,

} Here we use X, vy, z directly, without any “v.”! I
- |
B. List 30.7./1.8.2007 An Int

Classes |V

file vectorl ength. C

#i ncl ude “Vector.h”
#i ncl ude <i ostreanr
usi ng nanespace std;

int main() {
double x, vy, z;

cout << “Enter three vector conponents:”; o Now we can also create a Vector

cin >> x >y >> z; : . .
Vector v (X, y, 2): directly from its components, using

cout << “Length of this vector is * the constructor
<< v.length() << endl; » Calculates the length.
Vector w = v;
cout << “Length of vector wis
<< w. length() << endl;
return O;

B. List 30.7./1.8.2007 An Introduction to C++ Page 22

Classes V: Private

file Vector. h:

class Vector { * Now we have spherical

publ i c: di

Vector (double x_, double y , double z); COOr 'nate_s-

doubl e 1 ength(); * The coordinates may not be
privat e: accessed from outside the class

double r, phi, theta; anymore: they are private!

b

file Vector. C:

* Now the constructor is much

#i ncl ude “Vector.h more complicated.

#i ncl ude <cmat h>

usi ng nanespace std;

Vector:: Vector (double x , double y , double z) {
r = sqgrt (pow (x_, 2) + pow (y_, 2)+pow (z_, 2));
phi = atan2 (y_, X);
theta = (r > 0) ? acos (z_/r) : O;

} N : .

doubl e Vector::|ength() { But c'alculatlng the length is
return r; easy:

}

B. List 30.7./1.8.2007 An Introduction to C++ Page 23

Classes VI

#incl ude “Vector.h” What has changed in our main
#i ncl ude <i ostreanp program?

usi ng nanespace std;

NOTHING:! It still works!

This is GREAT!

Int main() {

doubl e x, vy, z;

cout << “Enter three vector conponents:”

cin > x > vy > z;

Vector v (X, vy, z);

cout << “Length of this vector is
<< v.length() << endl;

Vector w = v,

cout << “Length of vector wis *“
<< w.length() << endl;

return O;

—""'"_"l“i____“«“—_‘\\‘,_

/ ~ This concept s \
so great,it even ‘.
. has aname: Itis called |

} Encapsulatlon
Note: old routine _, |

W calcVectorLength does not work
anymore, because it accesses
the data members of Vector

directly!

B. List 30.7./1. to C++ Page 24

Reflection on Objects and Classes

* Objects: Instances of class variables:
Vector is a class, v is an Obect

e \With classes, we have

- a close coupling between data and functions that work on the data
- the possibility to hide how some piece of code works, we see only whatit does

- the possibility to divide our code
into many small pieces
that are individually simple and
therefore well to maintain

* Object Oriented Programming
Is the modern way to write
programs

Encapsulation hides the details of the implementation of an object.

B. List 30.7./1.8.2007 An Introduction to C++ Page 25

The lllusion of Simplicity

e |

e —J_:_LI_ YL - - %

ﬁ],;:ff___._ T

=

b i

The task of the software development team is to engineer the illusion of simpiiciy.

B. List 30.7./1.8.2007 An Introduction to C++ Page 26

More on Compiling

e Compiler g++: Translates source code (text file) into machine code
e 2 Steps: Compiling and Linking

e Output of compiling step: .o files (object files):
$> g++ -c Vector.C
$> g++ -c vectorlength.C

produces files Vect or. o and vect orl ength. o

* Output of linking step: executable (no extension)
$> g++ -0 vectorlength vectorlength.o Vector.o

combines the object files vect or | engt h. o and Vect or. o into
the executable file vect or | engt h

* |n the linking step, also source files may be used, e.g.
$> g++ -0 vectorlength vectorlength. C Vector.o

B. List 30.7./1.8.2007 An Introduction to C++ Page 27

. UH
Archives i

* Problem: If we have hundreds of object files, the linking commands gets
veeeeeeeery long

e Solution: Collect all the object files (usually without object files that
contain a nmai n() function) in an archive
$> ar r libnyroutines.a Vector.o area.o

e Now file | I bmyr out | nes. a contains the files Vect or. o and ar ea. o;

they can be listed with:
$> ar t libnyroutines.a
Vector.o
area. o

* WWe can use the archive in the linking step:
$> g++ -0 vectorlength vectorlength. C |ibnyroutines. a

e Alternatively:
$> g++ -0 vectorlength vectorlength.C -L. -lnyroutines

B. List 30.7./1.8.2007 An Introduction to C++ Page 28

Recompilation

e Second Problem: If we have hundreds of source files and object
files, re-compilation of all routines can take a lot of time

e But if we change Vect or . C, why should we recompile ar ea. C?
This is unnecessary!

e Solution: we recompile only Vector.C and replace it in the archive:
$> g++ -c Vector.C

$> ar r Vector.o libnyroutines. a

The “r" option (without a “-") tells ar to replace Vect or. o in
| 1 bryrouti ne. a

B. List 30.7./1.8.2007 An Introduction to C++ Page 29

UH
make i

*Third Problem: After an editing session, | may have changed 7 out of
150 .C files. It is very tedious to find out which files to recompile and
to do it by hand. Solution: The make utility

file Makefil e: OBJS is a variable that contains the name of the
object files we want to have in the library.
OBJS=Vector.o area.o This line says that | i bmyr out i nes. a depends

l'ibnyroutines.a: $(0BJS) — on all object files. If any of the object files has
. ar r |libmyroutines.a $(0BJS) changed (is newer than | i bnyr out i nes. a),
. C O: .
g+t -c $< $(CFLACD the library has to be recreated.

This line say how to recreate libmyroutines.a.
Note that the command has to be preceeded

vectorl ength: vectorlength.C |ibnyroutines.a
g++ -0 vectorlength vectorlength.C

-L. -lnyroutines by a “tab” character, which can be very clumsy
Vector.o: Vector.h to enter in some editors! (*| sometines
area.o: area.h works)

This is a “suffix rule”: It tells make how to make
e Now we can enter in the shell: a .Cfile into an .o file. $< stands for the .C file.
$> nmake vectorl ength This line says that Vect or . 0 also depends on
g++ -c Vector.C Vector. h,notonlyon Vector.C

g++ -c area.C
ar r libnyroutines.a Vector.o area.o
g++ -0 vectorlength vectorlength.C -L. -Inyroutines
$>
B. List 30.7./1.8.2007 An Introduction to C++ Page 30

Getters and Setters

cl ass Vector { This “const” means that getX() does
publi c: not change the Vector object.
Vector (double x , double y , double z); [We'll hear more about that later.
doubl e | engt h() @ I
doubl e get X() const,
doubl e get Y() const;
doubl e get Z() const;
voi d set X (doubl e newx) ;

By using “Getter” and “Setter” methods
instead of allowing direct access to the
data members, we “decouple” the class

privat e: Vect or from its “clients”, i.e. from the
doubl e r, phi, theta; code that uses Vect or objects.
3
e | f we now want to go back to a Vector
Vect or:: get X() const { representation which internally uses x, v,
return r*cos(phi)*sin(theta); z, we have to change only code in the
} files Vect or. h and Vect or. C. The
potentially hundreds of files in which we
Vector setX (double newx) { use Vect or objects can stay

doubl e newy = getY();
doubl e newz = getZ();
r = sgrt (newx*newx + newy*newy + newz*newz);
phi = atan2 (newy, newx);

theta = (r > 0) ? acos (newz/r) : O;

unchanged!

Page 31

A more complicated class: Particle

file Particle.h:

#i ncl ude “Vector. h”
class Particle { I
publ i c: B . . »”
Particle(); This is called the “default constructor

Particle (Vector v_, double m);
Vect or get Monentun() const;
doubl e get Energy() const;

doubl e getl nvari ant Mass () const;

doubl e getlnvariantMass (Particle p); - invariant mass of particle itself
privat e: — invariant mass of combination with
doubl e px, py, pz, m e; another particle

b Note: we can have several functions
with the same name, but different arguments,
that do different things!

(This is forbidden in C!)

This is called (function) overloading.

B. List 30.7./1.8.2007 An Introduction to C++ Page 32

Several Particles: Arrays

Problem: in general, we have several particles in an event

file particlearray. C

#i ncl ude “Vector. h” al | Parti cl es is an array with 100
#i ncl ude “Particle.h” Particles

#i nclude “fill Particles.h”
#i ncl ude <i ostreanv _ _
usi ng namespace st d; fillParticles somehow fills the

. . array, and returns the number of
int main() {

Particle allParticles[100]; particles.
int n=fillParticles (allParticles);

for (int i =0; i <n; ++i) {
for (int j =i+1; j < n; ++) {
cout << “lInvariant mass of particles * <<
<< * and “ << j << * |s *
<< all Particles[i].getlnvariantMass (all Particles[j])
<< endl ;
}
} Indices start at 0 in C++!

For an array with 100 elements, valid index values are 0 to 99.

Pointers

* A Pointer points to some object anywhere in memory: It contains
only the object's memry address, but knows to what kind (class) of
object it points to

* We can use this to refer to other objects

e Example: Decay KOg -> 11*11- : We want to point to the 2 possible

decay pions, and we may have several pion pairs sharing the same
pion candidate

¢] \)) T
b W I r = s “For God's sake, Edwards, put the
An english pointer The Pointer Sisters Another Pointer laser pointer away!”

B. List 30.7./1.8.2007 An Introduction to C++ Pointers can be dangerous!!!

Example: A KOS class

#i nclude “Particle.h”

cl ass KOSParticle {
publi c:
KOSParticle (Particle *piplus_, Particle *pimnus_);
get | nvari ant Mass() const;

private:
Particle *piplus; pi pl us is a pointer to a Particle object.
Particle *pimnus; Read: “*piplusisaParticle”. I
¥

KOSParticle:: KOSParticle (Particle *piplus_, Particle *pimnus_) {
pi plus = piplus_;

T e _ pointers can be copied without copying
) prmnus = pimnus_, the object to which they point I

KOSParticl e::getlnvariant Mass() const {
return (*piplus).getlnvariant Mass (*pi m nus);

} *pi pl us is the object itself.

B. List 30.7./1.8.2007 An Introduction to C++ Page 35

Using the Kshort class

#1 ncl ude “Vector. h”

#i ncl ude “Particle.h”

#1 ncl ude “KOSParticl e.h”
#i ncl ude <i ostreanr
usi ng nanespace std;

Int main() {
Particle allParticl es[100];
int n =fillParticles (allParticles[100]);

for (int i =0; i <n; ++i) {
for (int j = i+1; j <n; ++) { kOs is created
KOSParticle kOs (& allParticles[i]), &allParticles[j])); here.
cout << “Invariant mass of KOS is *
<< kOs. getlnvariant Mass() << endl;

} kOs is destroyed here!
} } (“it goes out of scope”:l

An Introduction to C++ Page 36

B. List 30.7./1.8.2007

Storing the Kshort Candidates

int main() {
Particle allParticl es[100];
int n =fillParticles (allParticles);
KOSParticle *all Kshorts[10000];

for (int i =0; i < 10000; ++i) allKshorts[i] = O;
I nt kOsNunber = O;
KOSParticle *kOs;

A new KOSParticle is created

for (int 1 = sy) A here, kOs points to it.

for (int j =i+1;, j <n; ++) {
kOs = new KOSParticle(& allParticles[i]), &allParticles[j]));
I f (abs (kOs->getlnvariantMass() - 0.493) < 0.05) {

al | Kshorts[kOsNunmber] = kOs; Note: k02- >get | nvari ant Mass()
++kOsNunber; \We keep the good Kshort candidatesgs just shorthand for

) #*koz) . getlnvariant Mass()

el se {

del et e kOs; ...and throw away the bad Kshort candidates!
} #

}
}

cout << “We have found “ << kOsNunber << “ Kshort candi dates.\n”;

B® STT1.0. Page 37

A KOSParticle is also a Particle

A This means that a KOSParticle
#i ncl ude “Particle.h” is also a Particle.

class KOSParticle: ublic ParticleX T s called Inheritance.
publ i c:

KOSParticle (Particle *piplus_, Particle *pimnus);
get I nvari ant Mass() ;

private:
Particle *piplus;

Particle *pimnus;

Particle

AN

The class “Particle” is called the base class of class “KOSParticle”.

Class “KOSParticle” is a subclass of class “Particle”.

It “inherits” from class Particle, which is the superclass.

KOSParticle

This is the “UML Diagram” for this relationship —

“UML” stands for “Unified Modeling Language”

B. List 30.7./1.8.2007 An Introduction to C++ Page 38

Inheritance

class Particle {
publi c:

doubl e getPt() { return sqrt(px*px+py*py); }

doubl e getPhi () { return atan2(py,

px); }

doubl e getlnvariantMass() { return sqrt (e*e-px*px-py*py-pz*pz); }

pr ot ect ed:

doubl e e, px, py, pz; “protected’

’’means

}i “private, but may be accessed from subclasses”.

class KOSParticle: public Particle {
publ i c:

KOSParticle (Particle *piplus_, Particle *pimnus_) {

pi pl us = piplus_;
pi M nus = pimnus_;
e = piplus->e + pimnus->e;

px = piplus->px + pim nus->px;
py = piplus->py + pimnus->py;
pz = piplus->pz + pimnus->pz;
}
private:

Particle *piplus;
Particle *pim nus;

Here we set the properties that are specific for a
KOSParti cl e, and those inherited from

Parti cl e.

Class KOSParti cl e inherits e, px, py, pz
from class Parti cl e!

KOSPar ti cl e also inherits get Pt (),
get Phi (), getlnvariant Mass() from
Particl e!

Inheritance |1

A new keyword.
“vi rt ual " means that a subclass may implement

class Particle { this method differently.

public:
Particle *get Daughter (int i) { _ .
return O; A more generic Particle:

} a particle may have daughter
... particles into which it decays.
pr g;ﬁgf gdé) . Normally, a particle has no
}- 2 L/ i daughters.
cl ass KOSParticle: public Particle {
publ i c:
virtual Particle *getDaughter (int i) {
if (i == 0) return pipus;
else if (i == 1) return pimnus,;
el se return O; _
} A KOSPar ti cl e has 2 daughters, 0 and 1. Therefore
1. .. it overrides the method get Daught er from the
_ base class.
privat e:

Particle *piplus;
Particle *pimnus;

Page 40

A Simple Jet Class

class Jet: public Particle { A simple class for jets; jets are composed of
public: particles, but may also be treated as a pseudo-
Jet () { particle (e.g. a quark!)

b

ndaughters = 0;

}
virual void addParticle (Particle *newDaughter) {
i f (nDaughters >= 100) {
cerr << “Jet::addParticle: too many daughters!\n”;

}
el se {
al | Daught er s[nDaught er s++] = newbDaught er; Typical C/C++: Doing 2 things at the
g o= HEUDILEIL e - =) same time: assigning to
px += newDaught er - >px; al | Daught er s[nDaught er s] ,
py += newDaught er - >py,; _ _
pz += newDaught er - >pz: incrementing nDaught er s
} afterwards.

}
virtual Particle *getDaughter (int i) {

return (i >= 0 & i < nDaughters) ? all Daughters[i] : O;

}

pr ot ect ed:
i nt nDaughters; . : : |
Particle *al | Daught ers[100] ; This is an array of pointers to Particles. Uff!

B. List 30.7./1.8.2007 An Introduction to C++ Page 41

Using the Jet Class: A Jet Algorithm (a la JADE)

int findlets (Particle *particles[], int nParticles, double ycut, double s) {
int imn, jmn;
while (nParticles > 1) {
double mm n = sqgrt (s);
for (int i =0; i < nParticles; ++i) {
for (int j =1i+1l; j < nParticles; ++)) {
double m = particles[i]->getlnvariantMass (particles[j]);
if (m< mmn) { _ _
min=m inin=i; jnmin = j; Loop over all pairs of particles,
} find the pair with the least invariant mass.
} For this pair, store the indices i and j.

}

If (mMmn*mMmn < ycut*s) {
Jet *jet = new Jet;
jet->addParticle (particles[imn]);
jet->addParticle (particles[jmn]);
particles[jm n] particles[--nParticl es];

Combine particles imin and jmin into a new jet;
remove both particles from the list of particles:
replace particle imin by the new jet,
replace particle jmin by last particle in the list,
decrease the number of particles by 1.

LU EI R I = 1) Gif: « This is the trick!
}el se break: Because a Jet isalsoaParticl e,
] ' we may use it wherever a Parti cl e is needed!

return nParticles;

}

B. List 30.7./1.8.2007 An Introduction to C++ Page 42

Reflection

* We just saw great things a work:
One object behaving like an object from a different class!

* A Jet IsA special sort of Particle:
class Jet: public Particle {...};

e Therefore, wherever a Parti cl e is needed, | can use a Jet !

e But a Jet also contains more information than an ordinary
Particl e, e.g. the number of Parti cl es that it is composed of.

* What happens to this additional information?

Jet *iet = new Jet: A pointer to a newly created Jet object

Par t . | . P o= ’ ;- Another pointer, pointing to this object
artircie “part =]e€t, A copy of the Jet object, with all the information

Jet jetCopy = *jet;

Particle partCopy = *jet: A copy of the Particle info of the Jet, i.e. only e, px, py, pz

B. List 30.7./1.8.2007 An Introduction to C++ Page 43

The Jet Algorithm at Work

all Particl es all Particl es

’_—

nParticles = 7 nParticles = 6

B. List 30.7./1.8.2007 An Introduction to C++ Page 44

Destructors

o After the Jet finder:
a complicated tree.

e All the objects use memory

all Particles

e |f we want to run the the jet L
finder on many events, we i
have to free the memory =
=0.8, pz=_/. e=8.5, px=-1.2)
class Jet: public Particle { " 1
publ i c: .
Ce artic =1.frtpl>§:l=(-eo. 5)
virtual ~Jet(); e:‘:";gj 5px;§.= S =0.3, pz=0
}; nParticles = 4
Jett::~Jet() {
for (int i = 0; i < nDaughters; i1++) { I
del ete al | Daughters[i]; ~Jet() is the Destructor of class Jet.
} It is called when a variable of class Jet goes out of scope,
} or when we explicitly delete an objet of class Jet

which a pointer points to.

The destructor is used to “clean up”.

B. List 30.7./1.8.2007 An Intro

Passing Arguments to Subroutines

* Normal case in C/C++: “Pass by Value”:
- Only the value of a variable is passed to a subroutine
- For objects: a copy is passed

- If we change the object, only a copy is changed => no effect for calling routine!

— If we pass an object of a subclass (Jet/Particle!), we lose information

Jet *jet = new Jet;
Particle *part = jet;

Jet jetCopy = *jet;
Particle partCopy = *jet;

* To pass “the object itself’, we can pass a pointer to the object:

- the value of the pointer is the the address of the object

— the pointer is copied, i.e. the address, but not the object pointed to!

Jet *jet = new Jet;
Particle *part = jet;

Jet jetCopy = *jet;
Particle partCopy = *jet;

An Introduction to C++ Page 46

References

e Passing pointers is completely OK, but leads to clumsy notation:
void sort (double *dl, double *d2) {
if (*d2 > *d1) {
double d = *di;
*dl *d2;
*d2 d;
}
}

int main() {
double a = 2. 3;
double b = 5;
sort (&a, &b);
cout << “After sorting: “ << a “ <=* b << endl;

* A reference is another name for an obiject:

int main() {

double a = 2. 3;

double b = 5;

doubl e& ¢ = a;

a = 7.5;

cout << “Value of c: “ << ¢ << endl;

B. List 30.7./1.8.2007 An Introduction to C++ Page 47

References |

e \With references, our sort function looks much nicer:
void sort (double& dl, double& d2) {
if (d2 > d1) {
double d = di;
dl d2:
d2 d;

}
}

int main() {
double a = 2. 3;
double b = 5;
sort (a, b);
cout << “After sorting: “ << a “ <=* b << endl;

}

e References don't exist in C, only in C++

* Passing a reference is essentially like passing a pointer, but nicer:

- No copying is involved

- The reference behaves like the object itself

B. List 30.7./1.8.2007 An Introduction to C++ Page 48

const

* A function that takes a reference to an object can in principle
change the object

* Very often, we want to write functions that only “look” at an object,
l.e. get some properties of the object, but do not change the object.

* |[f we use “const”, we promise not to change the object:
doubl e scal ar Product (const Vectoré& v1, const Vector& v2) {
return vl1. get X()*v2. get X()
+ vl1.getY()*v2.getY()
+ vl1.getZ()*v2.getZ();

e But how do we know that getX() does not change the Vector?

class Vector {
publ i c:

o The “const’ tells the compiler that getX() may be used
doubl e get X() const; for constant objects. Itis a promise that getX() will not
}: change the object.

doubl e Vector::get X() const { In the implementation file, the compiler will report an error if
return r*cos(phi)*sin(theta); we fry to do anything that changes the object, e.g. write
r-=1.7;

duction to C++ age

Things we Have not Covered

* operator overloading
e templates
* the standard template library

e much much more...

I'll try to give you a flavour about these things in the next slides.

These things are very useful, but not trivial to use, because we have
not covered many technical details in this 2 day boot camp.

But let's see...

B. List 30.7./1.8.2007 An Introduction to C++ Page 50

A Flavour of Templates

file maxi mum h:
This defines a generic “maximum” function for any data

t enpl at e<cl ass T> type T that has a “>” operator.

T maxi mum (const T& a, const T& b) { Note that the complete definition is in the header file, there
return (a > b) ? a: b; is no .C file!

}

file trymaxi mum C.

#i ncl ude<i ostrane
usi ng nanespace std;
#i ncl ude “maxi mum h”

int main() {
doubl e d1, d2;

cout << “Enter two floating point nunbers: *; Here we use the new maximum function:
cin >> dl1 >> d2; . .
cout << “The maxi mum of “ << d1 << “ and “ The compiler automatically creates a
<< d2 << “ is “ << maximum (d1, d2) << endl; maximum function from the template that
int i1, i2; takes two doubles and returns a double.
cout << “Enter two integer nunbers: “; _ _ .
cin>>il>i2; The compiler automatically creates a different
cout << “The maxi numof “ << il << “ and “ maximum function that takes two integers and
<< i2 << “ is “ << maxinum (i1, i2) << endl; returns an integer!

return O; I
B. List 30.7./1.8. n Introduction to C++ Page 51

A Flavour of Operator Overloading

file Vector. h:

class Vector {
public:

doubl e get X() const;
doubl e getY() const;
doubl e getZ() const;

}i

Here we declare the “+” operator for
Vector operator+ (const Vector& |hs, const Vector& rhs); v Vectors. I

file Vector.C

doubl e Vector::getX() const { return r*cos(phi)*sin(theta); } gl ne access functions are simple. j

Vect or operator+ (const Vector& | hs, const Vector& rhs) {

double x = I hs.getX() + rhs.getX(); The “+” operator is also
double y = I hs.getY() + rhs.getY(); straiahtforward
double z = I hs.getZ() + rhs.getZ(); 2

return Vector (x, vy, z);

Now we can write:
Vector v1 (1, 2, 3), v2 (-0.5 2.3, 0);
Vector w = vl + v2;

B. List 30.7./1.8.2007 An Introduction to C++ Page 52

A Flavour of the STL

e STL: Standard Template Library

file nunbervector. C

#i ncl ude <vector>

#i ncl ude <al gorithne
#i ncl ude <i ostreanr
usi ng nanmespace std;

int main() {
int n;
cout << “Enter the number of elements: “;
cin >> n;
vect or <doubl e> al | Nunber s(n);
for (int i =0; i <n; i++) {
cout << “Enter nunber “ << i1+1 << “: 7;
cin >> all Nunbers[i];
}
sort (all Nunbers. begin(), allNunbers.end());
cout << “Here are all nunbers in order: \n(”";
for (int i = 0; i < allNunbers.size()-1; i++) {
cout << all Nunmbers[i] << *, *;
}
cout << all Nunbers[all Nunbers.size()-1] << “)\n”;
return O;

vect or <T> is a template type.
It stores elements of type T. Here T is a double.
Here we create a vector with n elements.

The vector behaves like an array, but it can be
copied, resized, sorted etc efc.

Here we sort the vector.

The vector knows its own size! Very useful...

Page 53

Reserve

RESERVE

B. List 30.7./1.8.2007 An Introduction to C++ Page 54

Operators |: Arithmetic operators

* Arithmetic operators:

Operator |Meaning FORTRAN
Sign Change -
x Multiplication x
/ Division /
% Modulus MOD
+ Addition +
Subtraction

note: no exponentiation (** in FORTRAN)! use “pow” function

e Assignment: = evaluates right side, assigns value to left side
doubl e radius = 1.5;
doubl e result 3.14159276*r adi us*r adi us;
int i = 1;
I =1 + 1; [/l nowi is 2|

B. List 30.7./1.8.2007 An Introduction to C++ Page 55

Operators lll: Relational Operators

* Relational (comparison) operators: return “false” or “true”

Operator [Meaning FORTRAN
== Equal . EQ.
| = Not equal . NE.
< less than . LT.
<= less or equal . LE.
> greater than . GT.
>= greater or equal . GE.
e Careful: "=="is a comparison, “=" is an assignment!

* [In C/C++, assignment has also a value: the assigned value:
a=(b=7) + 1; is legal (b becomes 7, a becomes 8)

e Therefore: 1 f (a=7)... is also legal, but not what you want!

B. List 30.7./1.8.2007 An Introduction to C++ Page 56

Operators |V: Logical Operators

* | ogical operators: used for boolean expressions

Operator Meaning FORTRAN
! not . NOT.
| = exclusive or . XOR.
&& and . AND.
|| or R
* Bitwise operators: Perform bit-by-bit operations on integer types
Operator Meaning FORTRAN
~ complement | NOT
& bitwise and | AND
A bitwise exclusive or | EOR
| bitwise or | OR

e Careful! Don't confuse logical and bitwise operators!
integers can be converted to bool: O is false, everything else is true
=>7 && 8istrue,7 & 8is 0 is false!

B. List 30.7./1.8.2007 An Introduction to C++ Page 57

Numerical Functions

e Available from <cmat h>
Don't forget “usi ng nanespace std;”!

Function [Meaning FORTRAN|Remark
sin(x) |Sine SIN(X)
cos (x) |Cosine COS(X)
tan (x) [Tangent TAN(X)
asi n(x) |Arc sine ASI N(X)
acos(x) |Arc cosine ACOS(X)
atan(x) |Arc tangent ATAN(X) |-11/2 < Result < m1/2
at an2(x, y) |Arctangent (x/y) ATAN2 (X, Y)-m <Result<m
exp(x) Exponential EXP(X)
| og(Xx) Natural logarithm LOG X)
| 0g10(x) |Logarithm, base 10 LOGLO(X)
abs(x) |Absolute value ABS(X)
sqrt(x) |Square root SORT(X)
pow (X, y) [xtothe powery X¥*y only forx >=0
pow (x, i) [xto the integer power X | also for x<0

B. List 30.7./1.8.2007

An Introduction to C++

Page 58

