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Introduction |

 C++ is one of the most complicated programming languages
around

* FORTRAN is like a VW beetle:
simple, reliable, easy to master

e C++ is like a Formula 1 racer:
incredibly powerful, but difficult to drive

FORTAN
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Introduction Il

* The best way to learn programming is to look at programs
* I'll show many code examples

* |[n your work, you will mostly start with an example program and
adapt it to your needs

- | concentrate on showing you how to understand what existing programs do

- Programming languages are like all languages:
You cannot write if you can't read!

* For reasons of space, examples are ususally not production-quality
code!

- | often omiss (essential!) error checking
- | often prefer simple code over the most concise code

- Sometimes | avoid syntactic complications (omit “const”, don't use references)

for the sake of brevity and clarity
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UH

Hello, World! "

m
Note: C++ is case-sensitive:

Our first C++ program: cout, Cout and COUT are 3 different things!I
file: hello. C
#i ncl ude <i ostreanr Reads in file “i ost r eani, which declares cout
usi ng nanmespace std,; Without this, we would have to write st d: : cout
int main() “{ ) This is the main program, returning an integer

SOl &S Hel I o, Worldi\n"; B Prints out “Hel | 0, Worl d”, “\ n” ends the line
; return O; returns “0” to the shell: no error
| . Note: a semicolon ends each statement.
n the shell: I
$> 9;’; IIO hello hello.C g++ is the compiler, hel | o is the excutable file
$H:| | o eW)?I " execute “hel | 0”
&> ’ ' yes, it works!
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Functions

* [In C++: almost everything returns a value
=>no “"SUBROUTINE"s in C++, only “‘FUNCTION"s

* No implicit typing, every function and variable has to be declared

file: ar ea. h

doubl e area (doubl e radius); IDeclares the function:
’ function takes one argument “r adi us” of

file: ar ea. C type “doubl e”, returns a “doubl e” value

#i ncl ude “area.h” Includes the declaration file

doubl e area (doubl e radius) { Defines the function
doubl e result = 3.14159276*

radi us*r adi us;

iU Tesul Note: linebreaks are allowed almost
) everywhere
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Using Functions

file: cal carea. C

#i ncl ude <i ostreanp Includes the declaration files
usi ng namespace std; é
#include "area.h Note: <> for standard headers,

int main() { “” for user headers!

cout << “Enter radius: ”;
doubl e radi us;
cin >> radi us;
cout << “Area of circle wth radius

<< radius << “ is ci n reads from standard input
<< area (I‘adl US) << endl; é

return O;

}

| n the shell;

$> g++ -0 calcarea calcarea.C area.C

$> ./cal carea

Enter radius: 1.5

Area of circle wiwth radius 1.5 is 7.06858

$>
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Basic Types

e Some of the types available in C++

C++ Type | Meaning Size |[Range (appr.) Resolution
int, |ong |Integer 32 bit | +2147483648 1

f| oat Floating-point 32 bit +3:10+38 11077
doubl e Floating-point 64 bit +2-10%308 2-10°16
bool Boolean value 32 bit (1) false, true

char Character, integer | 8 bit -128 - 127 1
short Integer 16 bit +32768

| ong | ong |Integer 64 bit +9-1018 1
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Operators |: Arithmetic operators

* Arithmetic operators:

Operator Meaning
- Sign Change
* Multiplication
/ Division
% Modulus
+ Addition
- Subtraction

note: no exponentiation! use “pow” function

e Assignment: = evaluates right side, assigns value to left side
doubl e radius = 1.5;
doubl e result 3.14159276*r adi us*r adi us;
int i = 1;
I =1 + 1; [/l nowi is 2|

B. List 30.7./1.8.2007 An Introduction to C++ Page 8



Operators |I:

e Special cases:

int i = 1;

i 4= 1 sameasi = i+1; now i is?2

. x= 3. sameasi = i*3; now i is6

i increments i . Nowi is7.

int j = ++i assigns new valueofi to j. =>j is now 8.
’ called “pre-increment”

i =0 assigns old value to k. => k is now 8, buti is 9!

called “post-increment”

 The operators “+=", “* =" etc work also for f | oat , doubl e etc.

* Precedence as usual, evaluation from left to right:
a = b+2*-c +d%; IS same as
a = (b+(2*(-c))) +(d%);
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Operators lll: Relational Operators

* Relational (comparison) operators: return “false” or “true”

Operator | Meaning
== Equal
I = Not equal
< Less than
<= Less or equal
> Greater than
>= Greater or equal
e Careful: “=="is a comparison, “=" is an assignment!  __

* [In C/C++, an assignment has also a value: the assigned value:
a=(b=7) + 1; is legal (b becomes 7, a becomes 8)

e Therefore: 1 f (a=7)... is also legal, but not what you want!
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Operators |V: Logical Operators

* | ogical operators: used for boolean expressions

Operator | Meaning
! Not
| = Exclusive or
&& And
| | Or

* Bitwise operators: Perform bit-by-bit operations on integer types

Operator | Meaning
~ Bitwise complement

& Bitwise and
N Bitwise exclusive or
| Bitwise or

e Careful! Don't confuse logical and bitwise operators!
integers can be converted to bool: O is false, everything else is true
=>7 && 8istrue,7 & 8is 0 is false!
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Operators V: Input and Output

#i ncl ude <i ostreanp
usi ng nanespace st d;
int main() {

I nt i
doubl e d;:

cout << “Enter an integer

cin >> | >> d;

cout << “The i nteger
<< “ and the double is “ << d << endl:
cerr << “This is an error

return O;

B. List 30.7./1.8.2007

Every UNIX program has 3 pre-defined inputs/outputs:
ci n is the standard input.

cout is the standard output.
cerr is the error output.

“<<”is the output operator.
“>>" s the input operator.

and a doubl e: *“;:
<< |

message\ n”;
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Numerical Functions

e Available from <cmat h>
Don't forget “usi ng nanespace std; !

Function | Meaning Remark
si n(x) Sine
cos (x) Cosine
tan (X) Tangent
asi n( x) Arc sine
acos( x) Arc cosine
at an( x) Arc tangent -11/2 < Result < 11/2
at an2( x, y) | Arctangent (x/y) -T < Result < 11
exp( x) Exponential
| og( x) Natural logarithm
| 0g10( X) Logarithm, base 10
abs( x) Absolute value
sqrt ( X) Square root
pow (X, V) |Xxtothe powery only for x >=0

pow (X, 1)

X to the integer power

also for x<0
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Type Conversions |I: Automatic Conversions

C/C++ has many pre-defined type conversions that are applied
automatically, when necessary:

* integer types (int, short, char, long long) to floating point types (float, double):
gives the same number
careful: for large integers, the conversion is not exact!

* floating point types to integer types:
the number is truncated (not rounded!) towards O:
1.3->1,1.7->1,-1.8-> -1

Number types to bool: 0 -> false, non-zero -> true

arithmetic expressions between integers result in integers:
713->2,4/5->0

arithmetic expressions between floats (and integers) result in floats:
1.3*5->6.5, 4.0/5->0.8,4/5.0->0.8

Arguments of arithmetic functions are (often) automatically converted:
sqrt (2) > 1.41
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Type Conversions |l Casts

You can explicitly ask for a type conversion.
This is called a cast. (Like “casting bronze”)

e C-style casts: (type)expression:

double d = 3. 7;
int 1 = (int)d* 2; // 1 Is 3*2=6, not 7!

- discouraged!!! hard to read, ambiguous

e C++ style casts:

int i = static_cast<int>(d) * 2;

- the recommended form.
— other casts exist (dynam ¢c_cast, reinterpret _cast, static_cast)
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Control Strutures I: If-then-else

doubl e maxi mum (doubl e a, double b) { I
doubl e resul t; o : £ o
if (a>b) { e condition in parantheses after “i f
result = a: e note: r esul t must be declared before the if-block
} e multiple statements afteri f () and el se must be
el se {

enclosed in curly braces.

result = b;

} Note: no semicolon needed (but allowed)
\ return result; after curly braces I

doubl e maxi mum (doubl e a, double b) { forsingle statements afteri f ()
doubl e result; and el se, we don't need the curly
T (a >b) result = a braces. (But use them anyway!)

el se result = b;
return result;

} “I? . k6t . .
TR T T © - s a special operator (taking
double result = (a > b) ? a : b; three arguments), especially for

return resul t; cases such as this one.

}

doubl e maxi num (doubl e a, double b) {

return (a > b) ? a: b; The variable r esul t is unnecessary.
} é
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Control Structures Il: while, do-while

doubl e power (double x, int n) { [ o _ _
/1 eval uates x~n, for nonnegative n BYthe way: Thisis a single-line comment
double result = 1; ﬁ
int i = 0;
while (i <n) {
result *= x: * This block is executed only if i<n;
++i ; once i >= n, go to next statement
} * Block may be executed 0 times (for n == 0)
return result;
}
doffl iafﬁﬂf’gfgts' :Lpgg;)um 29 By the way: This is a multi-line
exp (x) = 1 + x + x22/2 + ... xAi/i! */ comment
double result =1, xx = 1;
int 1 = 1;
do { b= /i * This block is repeated as long as
Ul t i xx > 0.0000001 * result.
4 ’ * Block is executed at least once!

} while (xx > 0.0000001 * result);
return result:
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Control Structures lll: for

doubl e power (double x, int n) {
/'l eval uates x”n, for nonnegative n
:1;

return result;

}

doubl e power (double x, jJint n)\{
/] eval uates x"n, forynonneg§ti ve n

doubl e re e Af or -loop is exactly equivalent to

= 1;
£5 ;( :>;@) { a whi | e-loop
resul t ==X, e Just a convenient short-hand
} notation

return result;

}
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More Complicated Data Structures: Classes |

* In a class, several variables (“data

file Vector. h: members”) can be grouped togther
o eEs Vesier * “public” means: other parts of the
publ i c: program may access the variable

double x, vy, z * A class creates a new variable type!

g | 2 Note: Here the semicolon is mandatory!!!
file caIcVéEP5FfEHﬂPH!HF------------I
doubl e cal cVect orLength (Vector v); I

file cal cVect or Lengt h. C;
#i ncl ude “Vector.h”

I ncl ude <cmat h>
usi ng nanespace std;

doubl e cal cVectorlLength (Vector v) { HEHere we have to pass only one variable of
return sart (pow (v.x, 2) + type Vect or , instead of 3
pow (v.y, 2)+pow (v.z, 2)); ’

}
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Classes ||

#i ncl ude “Vector.h”
#i ncl ude “cal cVect orLengt h. h”
#i ncl ude <i ostreanp
usi ng nanespace std;

Int main() {
Vect or v;

cout << “Enter three vector conponents:”; |
cin >> v.X >> v.y >> V., Z; Creates a Vector named v.

cout << “Length of this vector is * * Reads in the components:
<< cal cVectorlLength (v) << endl; v.X is x-component of v!

Vector w = v; » Calculates the length.

cout << “Length of vector wis * * Creates a new Vector w, which is a
<< cal cVectorLength (w) << endl; copy of V.

return O;




Classes |ll: Function Members / Methods

file Vector. h:

cl ass Vector { 0
publ i c: * This is a “constructor”
Vector (double x_, double y , double z_); *® This calculates the length of a
doubl e | ength(); Vector; it is a function: therefore
. double x, y, z; the “()”, but takes no arguments

file Vector. C

Note: Here we really need the header file,

#i ncl ude “Vector. h” _
because it declares the layout of the class

#i ncl ude <cmat h>
usi ng nanespace std;

ect or (double x_, double y_, double z_) {

XL Y=Y, 2 =2, Note: in the definition of the function
) outside the “cl ass Vector {};7, we
doubl e Vector::|ength() { have to give the class name explicitly

return sqrt (pow (x, 2) + pow (Y,

} Here we use X, vy, z directly, without any “v.”! I
- |
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Classes |V

file vectorl ength. C

#i ncl ude “Vector.h”
#i ncl ude <i ostreanr
usi ng nanespace std;

int main() {
double x, vy, z;

cout << “Enter three vector conponents:”; o Now we can also create a Vector

cin >> x >y >> z; : . .
Vector v (X, y, 2): directly from its components, using

cout << “Length of this vector is * the constructor
<< v.length() << endl; » Calculates the length.
Vector w = v;
cout << “Length of vector wis
<< w. length() << endl;
return O;
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Classes V: Private

file Vector. h:

class Vector { * Now we have spherical

publ i c: di

Vector (double x_, double y , double z ); COOr 'nate_s-

doubl e 1 ength(); * The coordinates may not be
privat e: accessed from outside the class

double r, phi, theta; anymore: they are private!

b

file Vector. C:

* Now the constructor is much

#i ncl ude “Vector.h more complicated.

#i ncl ude <cmat h>

usi ng nanespace std;

Vector:: Vector (double x , double y , double z ) {
r = sqgrt (pow (x_, 2) + pow (y_, 2)+pow (z_, 2));
phi = atan2 (y_, X );
theta = (r > 0) ? acos (z_/r) : O;

} N : .

doubl e Vector::|ength() { But c'alculatlng the length is
return r; easy:

}
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Classes VI

#incl ude “Vector.h” What has changed in our main
#i ncl ude <i ostreanp program?

usi ng nanespace std;

NOTHING:! It still works!

This is GREAT!

Int main() {

doubl e x, vy, z;

cout << “Enter three vector conponents:”

cin > x > vy > z;

Vector v (X, vy, z);

cout << “Length of this vector is
<< v.length() << endl;

Vector w = v,

cout << “Length of vector wis *“
<< w.length() << endl;

return O;

—""'"_"l“i____“«“—_‘\\‘,_

/ ~ This concept s \
so great,it even ‘.
. has aname: Itis called |

} Encapsulatlon
Note: old routine _, |

W calcVectorLength does not work
anymore, because it accesses
the data members of Vector

directly!
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Reflection on Objects and Classes

* Objects: Instances of class variables:
Vector is a class, v is an Obect

e \With classes, we have

- a close coupling between data and functions that work on the data
- the possibility to hide how some piece of code works, we see only whatit does

- the possibility to divide our code
into many small pieces
that are individually simple and
therefore well to maintain

* Object Oriented Programming
Is the modern way to write
programs

Encapsulation hides the details of the implementation of an object.
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The lllusion of Simplicity

e |

e —J_:_LI_ YL - - %

ﬁ],;:ff___._ T

=

b i

The task of the software development team is to engineer the illusion of simpiiciy.
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More on Compiling

e Compiler g++: Translates source code (text file) into machine code
e 2 Steps: Compiling and Linking

e Output of compiling step: .o files (object files):
$> g++ -c Vector.C
$> g++ -c vectorlength.C

produces files Vect or. o and vect orl ength. o

* Output of linking step: executable (no extension)
$> g++ -0 vectorlength vectorlength.o Vector.o

combines the object files vect or | engt h. o and Vect or. o into
the executable file vect or | engt h

* |n the linking step, also source files may be used, e.g.
$> g++ -0 vectorlength vectorlength. C Vector.o
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. UH
Archives i

* Problem: If we have hundreds of object files, the linking commands gets
veeeeeeeery long

e Solution: Collect all the object files (usually without object files that
contain a nmai n() function) in an archive
$> ar r libnyroutines.a Vector.o area.o

e Now file | I bmyr out | nes. a contains the files Vect or. o and ar ea. o;

they can be listed with:
$> ar t libnyroutines.a
Vector.o
area. o

* WWe can use the archive in the linking step:
$> g++ -0 vectorlength vectorlength. C |ibnyroutines. a

e Alternatively:
$> g++ -0 vectorlength vectorlength.C -L. -lnyroutines
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Recompilation

e Second Problem: If we have hundreds of source files and object
files, re-compilation of all routines can take a lot of time

e But if we change Vect or . C, why should we recompile ar ea. C?
This is unnecessary!

e Solution: we recompile only Vector.C and replace it in the archive:
$> g++ -c Vector.C

$> ar r Vector.o libnyroutines. a

The “r" option (without a “-") tells ar to replace Vect or. o in
| 1 bryrouti ne. a
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UH
make i

*Third Problem: After an editing session, | may have changed 7 out of
150 .C files. It is very tedious to find out which files to recompile and
to do it by hand. Solution: The make utility

file Makefil e: OBJS is a variable that contains the name of the
object files we want to have in the library.
OBJS=Vector.o area.o This line says that | i bmyr out i nes. a depends

l'ibnyroutines.a: $(0BJS) — on all object files. If any of the object files has
. ar r |libmyroutines.a $(0BJS) changed (is newer than | i bnyr out i nes. a),
. C O: .
g+t -c $< $( CFLACD the library has to be recreated.

This line say how to recreate libmyroutines.a.
Note that the command has to be preceeded

vectorl ength: vectorlength.C |ibnyroutines.a
g++ -0 vectorlength vectorlength.C

-L. -lnyroutines by a “tab” character, which can be very clumsy
Vector.o: Vector.h to enter in some editors! (*| sometines
area.o: area.h works)

This is a “suffix rule”: It tells make how to make
e Now we can enter in the shell: a .Cfile into an .o file. $< stands for the .C file.
$> nmake vectorl ength This line says that Vect or . 0 also depends on
g++ -c Vector.C Vector. h,notonlyon Vector.C

g++ -c area.C
ar r libnyroutines.a Vector.o area.o
g++ -0 vectorlength vectorlength.C -L. -Inyroutines
$>
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Getters and Setters

cl ass Vector { This “const” means that getX() does
publi c: not change the Vector object.
Vector (double x , double y , double z ); [We'll hear more about that later.
doubl e | engt h() @ I
doubl e get X() const,
doubl e get Y() const;
doubl e get Z() const;
voi d set X (doubl e newx) ;

By using “Getter” and “Setter” methods
instead of allowing direct access to the
data members, we “decouple” the class

privat e: Vect or from its “clients”, i.e. from the
doubl e r, phi, theta; code that uses Vect or objects.
3
e | f we now want to go back to a Vector
Vect or:: get X() const { representation which internally uses x, v,
return r*cos(phi)*sin(theta); z, we have to change only code in the
} files Vect or. h and Vect or. C. The
potentially hundreds of files in which we
Vector setX (double newx) { use Vect or objects can stay

doubl e newy = getY();
doubl e newz = getZ();
r = sgrt (newx*newx + newy*newy + newz*newz);
phi = atan2 (newy, newx);

theta = (r > 0) ? acos (newz/r) : O;

unchanged!
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A more complicated class: Particle

file Particle.h:

#i ncl ude “Vector. h”
class Particle { I
publ i c: B . . »”
Particle(); This is called the “default constructor

Particle (Vector v_, double m);
Vect or get Monentun() const;
doubl e get Energy() const;

doubl e getl nvari ant Mass () const;

doubl e getlnvariantMass (Particle p); - invariant mass of particle itself
privat e: — invariant mass of combination with
doubl e px, py, pz, m e; another particle

b Note: we can have several functions
with the same name, but different arguments,
that do different things!

(This is forbidden in C!)

This is called (function) overloading.
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Several Particles: Arrays

Problem: in general, we have several particles in an event

file particlearray. C

#i ncl ude “Vector. h” al | Parti cl es is an array with 100
#i ncl ude “Particle.h” Particles

#i nclude “fill Particles.h”
#i ncl ude <i ostreanv _ _
usi ng namespace st d; fillParticles somehow fills the

. . array, and returns the number of
int main() {

Particle allParticles[100]; particles.
int n=fillParticles (allParticles);

for (int i =0; i <n; ++i) {
for (int j =i+1; j < n; ++) {
cout << “lInvariant mass of particles * <<
<< * and “ << j << * |s *
<< all Particles[i].getlnvariantMass (all Particles[j])
<< endl ;
}
} Indices start at 0 in C++!

For an array with 100 elements, valid index values are 0 to 99.




Pointers

* A Pointer points to some object anywhere in memory: It contains
only the object's memry address, but knows to what kind (class) of
object it points to

* We can use this to refer to other objects

e Example: Decay KOg -> 11*11- : We want to point to the 2 possible

decay pions, and we may have several pion pairs sharing the same
pion candidate

¢ ] \) ) T
b W I r = s “For God's sake, Edwards, put the
An english pointer The Pointer Sisters Another Pointer laser pointer away!”
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Example: A KOS class

#i nclude “Particle.h”

cl ass KOSParticle {
publi c:
KOSParticle (Particle *piplus_, Particle *pimnus_);
get | nvari ant Mass() const;

private:
Particle *piplus; pi pl us is a pointer to a Particle object.
Particle *pimnus; Read: “*piplusisaParticle”. I
¥

KOSParticle:: KOSParticle (Particle *piplus_, Particle *pimnus_) {
pi plus = piplus_;

T e _ pointers can be copied without copying
) prmnus = pimnus_, the object to which they point I

KOSParticl e::getlnvariant Mass() const {
return (*piplus).getlnvariant Mass (*pi m nus);

} *pi pl us is the object itself.
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Using the Kshort class

#1 ncl ude “Vector. h”

#i ncl ude “Particle.h”

#1 ncl ude “KOSParticl e.h”
#i ncl ude <i ostreanr
usi ng nanespace std;

Int main() {
Particle allParticl es[100];
int n =fillParticles (allParticles[100]);

for (int i =0; i <n; ++i) {
for (int j = i+1; j <n; ++) { kOs is created
KOSParticle kOs (& allParticles[i]), &allParticles[j])); here.
cout << “Invariant mass of KOS is *
<< kOs. getlnvariant Mass() << endl;

} kOs is destroyed here!
} } (“it goes out of scope”:l

An Introduction to C++ Page 36
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Storing the Kshort Candidates

int main() {
Particle allParticl es[100];
int n =fillParticles (allParticles);
KOSParticle *all Kshorts[10000];

for (int i =0; i < 10000; ++i) allKshorts[i] = O;
I nt kOsNunber = O;
KOSParticle *kOs;

A new KOSParticle is created

for (int 1 = sy ) A here, kOs points to it.

for (int j =i+1;, j <n; ++) {
kOs = new KOSParticle(& allParticles[i]), &allParticles[j]));
I f (abs (kOs->getlnvariantMass() - 0.493) < 0.05) {

al | Kshorts[ kOsNunmber] = kOs; Note: k02- >get | nvari ant Mass()
++kOsNunber; \We keep the good Kshort candidatesgs just shorthand for

) #*koz) . getlnvariant Mass()

el se {

del et e kOs; ...and throw away the bad Kshort candidates!
} #

}
}

cout << “We have found “ << kOsNunber << “ Kshort candi dates.\n”;
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A KOSParticle is also a Particle

A This means that a KOSParticle
#i ncl ude “Particle.h” is also a Particle.

class KOSParticle: ublic ParticleX T s called Inheritance.
publ i c:

KOSParticle (Particle *piplus_, Particle *pimnus );
get I nvari ant Mass() ;

private:
Particle *piplus;

Particle *pimnus;

Particle

AN

The class “Particle” is called the base class of class “KOSParticle”.

Class “KOSParticle” is a subclass of class “Particle”.

It “inherits” from class Particle, which is the superclass.

KOSParticle

This is the “UML Diagram” for this relationship —

“UML” stands for “Unified Modeling Language”
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Inheritance

class Particle {
publi c:

doubl e getPt() { return sqrt(px*px+py*py); }

doubl e getPhi () { return atan2(py,

px); }

doubl e getlnvariantMass() { return sqrt (e*e-px*px-py*py-pz*pz); }

pr ot ect ed:

doubl e e, px, py, pz; “protected’

’’means

}i “private, but may be accessed from subclasses”.

class KOSParticle: public Particle {
publ i c:

KOSParticle (Particle *piplus_, Particle *pimnus_) {

pi pl us = piplus_;
pi M nus = pimnus_;
e = piplus->e + pimnus->e;

px = piplus->px + pim nus->px;
py = piplus->py + pimnus->py;
pz = piplus->pz + pimnus->pz;
}
private:

Particle *piplus;
Particle *pim nus;

Here we set the properties that are specific for a
KOSParti cl e, and those inherited from

Parti cl e.

Class KOSParti cl e inherits e, px, py, pz
from class Parti cl e!

KOSPar ti cl e also inherits get Pt (),
get Phi (), getlnvariant Mass() from
Particl e!



Inheritance |1

A new keyword.
“vi rt ual " means that a subclass may implement

class Particle {  this method differently.

public:
Particle *get Daughter (int i) { _ .
return O; A more generic Particle:

} a particle may have daughter
... particles into which it decays.
pr g;ﬁgf gdé ) . Normally, a particle has no
}- 2 L/ i daughters.
cl ass KOSParticle: public Particle {
publ i c:
virtual Particle *getDaughter (int i) {
if (i == 0) return pipus;
else if (i == 1) return pimnus,;
el se return O; _
} A KOSPar ti cl e has 2 daughters, 0 and 1. Therefore
1. .. it overrides the method get Daught er from the
_ base class.
privat e:

Particle *piplus;
Particle *pimnus;
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A Simple Jet Class

class Jet: public Particle { A simple class for jets; jets are composed of
public: particles, but may also be treated as a pseudo-
Jet () { particle (e.g. a quark!)

b

ndaughters = 0;

}
virual void addParticle (Particle *newDaughter) {
i f (nDaughters >= 100) {
cerr << “Jet::addParticle: too many daughters!\n”;

}
el se {
al | Daught er s[ nDaught er s++] = newbDaught er; Typical C/C++: Doing 2 things at the
g o= HEUDILEIL e - =) same time: assigning to
px += newDaught er - >px; al | Daught er s[ nDaught er s] ,
py += newDaught er - >py,; _ _
pz += newDaught er - >pz: incrementing nDaught er s
} afterwards.

}
virtual Particle *getDaughter (int i) {

return (i >= 0 & i < nDaughters) ? all Daughters[i] : O;

}

pr ot ect ed:
i nt nDaughters; . : : |
Particle *al | Daught ers[ 100] ; This is an array of pointers to Particles. Uff!
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Using the Jet Class: A Jet Algorithm (a la JADE)

int findlets (Particle *particles[], int nParticles, double ycut, double s) {
int imn, jmn;
while (nParticles > 1) {
double mm n = sqgrt (s);
for (int i =0; i < nParticles; ++i) {
for (int j =1i+1l; j < nParticles; ++)) {
double m = particles[i]->getlnvariantMass (particles[j]);
if (m< mmn) { _ _
min=m inin=i; jnmin = j; Loop over all pairs of particles,
} find the pair with the least invariant mass.
} For this pair, store the indices i and j.

}

If (mMmn*mMmn < ycut*s) {
Jet *jet = new Jet;
jet->addParticle (particles[imn]);
jet->addParticle (particles[jmn]);
particles[jm n] particles[--nParticl es];

Combine particles imin and jmin into a new jet;
remove both particles from the list of particles:
replace particle imin by the new jet,
replace particle jmin by last particle in the list,
decrease the number of particles by 1.

LU EI R I = 1) Gif: « This is the trick!
}el se break: Because a Jet isalsoaParticl e,
] ' we may use it wherever a Parti cl e is needed!

return nParticles;

}
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Reflection

* We just saw great things a work:
One object behaving like an object from a different class!

* A Jet IsA special sort of Particle:
class Jet: public Particle {...};

e Therefore, wherever a Parti cl e is needed, | can use a Jet !

e But a Jet also contains more information than an ordinary
Particl e, e.g. the number of Parti cl es that it is composed of.

* What happens to this additional information?

Jet *iet = new Jet: A pointer to a newly created Jet object

Par t . | . P o= ’ ;- Another pointer, pointing to this object
artircie “part =]e€t, A copy of the Jet object, with all the information

Jet jetCopy = *jet;

Particle partCopy = *jet: A copy of the Particle info of the Jet, i.e. only e, px, py, pz
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The Jet Algorithm at Work

all Particl es all Particl es

’_—

nParticles = 7 nParticles = 6
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Destructors

o After the Jet finder:
a complicated tree.

e All the objects use memory

all Particles

e |f we want to run the the jet L
finder on many events, we i
have to free the memory =
=0.8, pz=_/. e=8.5, px=-1.2)
class Jet: public Particle { " 1
publ i c: .
Ce artic =1.frtpl>§:l=(-eo. 5)
virtual ~Jet(); e:‘:";gj 5px;§.= S =0.3, pz=0
}; nParticles = 4
Jett::~Jet() {
for (int i = 0; i < nDaughters; i1++) { I
del ete al | Daughters[i]; ~Jet() is the Destructor of class Jet.
} It is called when a variable of class Jet goes out of scope,
} or when we explicitly delete an objet of class Jet

which a pointer points to.

The destructor is used to “clean up”.
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Passing Arguments to Subroutines

* Normal case in C/C++: “Pass by Value”:
- Only the value of a variable is passed to a subroutine
- For objects: a copy is passed

- If we change the object, only a copy is changed => no effect for calling routine!

— If we pass an object of a subclass (Jet/Particle!), we lose information

Jet *jet = new Jet;
Particle *part = jet;

Jet jetCopy = *jet;
Particle partCopy = *jet;

* To pass “the object itself’, we can pass a pointer to the object:

- the value of the pointer is the the address of the object

— the pointer is copied, i.e. the address, but not the object pointed to!

Jet *jet = new Jet;
Particle *part = jet;

Jet jetCopy = *jet;
Particle partCopy = *jet;
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References

e Passing pointers is completely OK, but leads to clumsy notation:
void sort (double *dl, double *d2) {
if (*d2 > *d1) {
double d = *di;
*dl *d2;
*d2 d;
}
}

int main() {
double a = 2. 3;
double b = 5;
sort (&a, &b);
cout << “After sorting: “ << a “ <=* b << endl;

* A reference is another name for an obiject:

int main() {

double a = 2. 3;

double b = 5;

doubl e& ¢ = a;

a = 7.5;

cout << “Value of c: “ << ¢ << endl;
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References |

e \With references, our sort function looks much nicer:
void sort (double& dl, double& d2) {
if (d2 > d1) {
double d = di;
dl d2:
d2 d;

}
}

int main() {
double a = 2. 3;
double b = 5;
sort (a, b);
cout << “After sorting: “ << a “ <=* b << endl;

}

e References don't exist in C, only in C++

* Passing a reference is essentially like passing a pointer, but nicer:

- No copying is involved

- The reference behaves like the object itself
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const

* A function that takes a reference to an object can in principle
change the object

* Very often, we want to write functions that only “look” at an object,
l.e. get some properties of the object, but do not change the object.

* |[f we use “const”, we promise not to change the object:
doubl e scal ar Product (const Vectoré& v1, const Vector& v2) {
return vl1. get X()*v2. get X()
+ vl1.getY()*v2.getY()
+ vl1.getZ()*v2.getZ();

e But how do we know that getX() does not change the Vector?

class Vector {
publ i c:

o The “const’ tells the compiler that getX() may be used
doubl e get X() const; for constant objects. Itis a promise that getX() will not
}: change the object.

doubl e Vector::get X() const { In the implementation file, the compiler will report an error if
return r*cos(phi)*sin(theta); we fry to do anything that changes the object, e.g. write
r-=1.7;

duction to C++ age




Things we Have not Covered

* operator overloading
e templates
* the standard template library

e much much more...

I'll try to give you a flavour about these things in the next slides.

These things are very useful, but not trivial to use, because we have
not covered many technical details in this 2 day boot camp.

But let's see...
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A Flavour of Templates

file maxi mum h:
This defines a generic “maximum” function for any data

t enpl at e<cl ass T> type T that has a “>” operator.

T maxi mum (const T& a, const T& b) { Note that the complete definition is in the header file, there
return (a > b) ? a: b; is no .C file!

}

file trymaxi mum C.

#i ncl ude<i ostrane
usi ng nanespace std;
#i ncl ude “maxi mum h”

int main() {
doubl e d1, d2;

cout << “Enter two floating point nunbers: *; Here we use the new maximum function:
cin >> dl1 >> d2; . .
cout << “The maxi mum of “ << d1 << “ and “ The compiler automatically creates a
<< d2 << “ is “ << maximum (d1, d2) << endl; maximum function from the template that
int i1, i2; takes two doubles and returns a double.
cout << “Enter two integer nunbers: “; _ _ .
cin>>il>i2; The compiler automatically creates a different
cout << “The maxi numof “ << il << “ and “ maximum function that takes two integers and
<< i2 << “ is “ << maxinum (i1, i2) << endl; returns an integer!

return O; I
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A Flavour of Operator Overloading

file Vector. h:

class Vector {
public:

doubl e get X() const;
doubl e getY() const;
doubl e getZ() const;

}i

Here we declare the “+” operator for
Vector operator+ (const Vector& |hs, const Vector& rhs); v Vectors. I

file Vector.C

doubl e Vector::getX() const { return r*cos(phi)*sin(theta); } gl ne access functions are simple. j

Vect or operator+ (const Vector& | hs, const Vector& rhs) {

double x = I hs.getX() + rhs.getX(); The “+” operator is also
double y = I hs.getY() + rhs.getY(); straiahtforward
double z = I hs.getZ() + rhs.getZ(); 2

return Vector (x, vy, z);

Now we can write:
Vector v1 (1, 2, 3), v2 (-0.5 2.3, 0);
Vector w = vl + v2;
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A Flavour of the STL

e STL: Standard Template Library

file nunbervector. C

#i ncl ude <vector>

#i ncl ude <al gorithne
#i ncl ude <i ostreanr
usi ng nanmespace std;

int main() {
int n;
cout << “Enter the number of elements: “;
cin >> n;
vect or <doubl e> al | Nunber s(n);
for (int i =0; i <n; i++) {
cout << “Enter nunber “ << i1+1 << “: 7;
cin >> all Nunbers[i];
}
sort (all Nunbers. begin(), allNunbers.end());
cout << “Here are all nunbers in order: \n(”";
for (int i = 0; i < allNunbers.size()-1; i++) {
cout << all Nunmbers[i] << *, *;
}
cout << all Nunbers[all Nunbers.size()-1] << “)\n”;
return O;

vect or <T> is a template type.
It stores elements of type T. Here T is a double.
Here we create a vector with n elements.

The vector behaves like an array, but it can be
copied, resized, sorted etc efc.

Here we sort the vector.

The vector knows its own size! Very useful...
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Reserve

RESERVE
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Operators |: Arithmetic operators

* Arithmetic operators:

Operator |Meaning FORTRAN
Sign Change -
x Multiplication x
/ Division /
% Modulus MOD
+ Addition +
Subtraction

note: no exponentiation (** in FORTRAN)! use “pow” function

e Assignment: = evaluates right side, assigns value to left side
doubl e radius = 1.5;
doubl e result 3.14159276*r adi us*r adi us;
int i = 1;
I =1 + 1; [/l nowi is 2|

B. List 30.7./1.8.2007 An Introduction to C++ Page 55



Operators lll: Relational Operators

* Relational (comparison) operators: return “false” or “true”

Operator [Meaning FORTRAN
== Equal . EQ.
| = Not equal . NE.
< less than . LT.
<= less or equal . LE.
> greater than . GT.
>= greater or equal . GE.
e Careful: "=="is a comparison, “=" is an assignment!

* [In C/C++, assignment has also a value: the assigned value:
a=(b=7) + 1; is legal (b becomes 7, a becomes 8)

e Therefore: 1 f (a=7)... is also legal, but not what you want!
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Operators |V: Logical Operators

* | ogical operators: used for boolean expressions

Operator Meaning FORTRAN
! not . NOT.
| = exclusive or . XOR.
&& and . AND.
|| or R
* Bitwise operators: Perform bit-by-bit operations on integer types
Operator Meaning FORTRAN
~ complement | NOT
& bitwise and | AND
A bitwise exclusive or | EOR
| bitwise or | OR

e Careful! Don't confuse logical and bitwise operators!
integers can be converted to bool: O is false, everything else is true
=>7 && 8istrue,7 & 8is 0 is false!
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Numerical Functions

e Available from <cmat h>
Don't forget “usi ng nanespace std;”!

Function [Meaning FORTRAN|Remark
sin(x) |Sine SIN( X)
cos (x) |Cosine COS( X)
tan (x) [Tangent TAN( X)
asi n(x) |Arc sine ASI N( X)
acos(x) |Arc cosine ACOS( X)
atan(x) |Arc tangent ATAN( X)  |-11/2 < Result < m1/2
at an2(x, y) |Arctangent (x/y) ATAN2 (X, Y)-m <Result<m
exp(x) Exponential EXP( X)
| og( Xx) Natural logarithm LOG X)
| 0g10(x) |Logarithm, base 10 LOGLO( X)
abs(x)  |Absolute value ABS( X)
sqrt(x) |Square root SORT( X)
pow (X, y) [xtothe powery X¥*y only forx >=0
pow (x, i) [xto the integer power X | also for x<0
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