
SELF-FILLING HISTOGRAMS: AN OBJECT ORIENTED ANALYSIS
FRAMEWORK

Jenny List∗, University of Wuppertal
Benno List† , ETH Zurich

Abstract

We present a set of RooT based histogram classes that
allow to define the histogrammed quantity, its weight and
the cuts to be applied at the time of the booking. We use
lightweight function object classes to define plotted quan-
tities and cut conditions; the ”self-filling” histograms hold
pointers to these objects, and evaluate them in a fill method
that thus needs no parameters. The use of function ob-
jects rather than strings to define plotted quantities and
cuts permits error detection at compile rather than run time.
Arithmetic, logical and comparison expressions are imple-
mented by operator overloading. A caching mechanism is
available to prevent repeated evaluation of complicated ex-
pressions. Histograms can be grouped in collections. We
apply the visitor pattern to perform operations such as fit-
ting or attribute setting on such a group, without having to
extend the collection class each time a new functionality is
needed.

INTRODUCTION
Analyses in high-energy physics typically involve the

filling of a large number of histograms from n-tuple like
structures, where single records correspond to individual
events, or to parts of events such as tracks or particle can-
didates. Often, hundreds or even thousands of histograms
are to be filled by an analysis program from thousands or
millions of records.

The RooT [1] framework provides powerful classes for
the the storage of n-tuple like datasets in the form of RooT-
trees, as well as classes for the creation and visualization
of histograms. Traditionally, histograms are booked at the
beginning of of an analysis program and the filled in a loop
that iterates over the data records.

Our analysis framework is based on the RooT histogram
classes. We aim for a declarative rather than procedu-
ral programming style, where the booking of a histogram,
which defines how a quantity shall be plotted, is united with
the filling, which defines what is to be plotted. Thus, in
a single function call we completely define the contents
of a histogram, which makes the resulting analysis code
better maintainable. Since analysis programs often grow
from a small nucleus to a large program over the course
of months or even years, flexibility and maintainability are
of paramount importance to make the lifespan of an analy-
sis code large enough to complete the desired task (e. g. a

∗ Jenny.Boehme@desy.de
†Benno.List@desy.de

PhD thesis) before software entropy renders the code use-
less and requires a complete or partial re-implementation
of the program.

RooT already provides a mechanism to produce a his-
togram with a single statement, namely the TTree::Draw

method; however, this method also entails a complete itera-
tion over the data set at the time of the histogram definition,
which makes it unsuitable for the filling of a large number
of histograms, especially when complex algorithms such
as jet finding are to be performed on each record prior to
plotting.

Our toolkit ois based on the use of light-weight func-
tion objects. Such function objects overload the function
call operator operator() such that it returns the value to
be plotted. The “self-filling” histogram stores a pointer to
such an object, which allows it to have a Fill() method
without any arguments. During the histogram booking, i. e.
during construction of the histogram object, the pointer
to the function object is stored with the histogram; in the
loop over the data records, just the argument-less Fill()
method has to be called for all histograms that shall be
filled, which is easily done by registering all such his-
tograms in a collection of histograms.

Additional mechanisms exist for cases where cuts are to
be evaluated before entries are made in a histogram, for
cases where more than one entry per record is to be made
(e. g. one entry for each track in an event), and when one
quantity determines into which histogram an entry shall be
made, for instance when one wants to plot a quantity dif-
ferentially in another variable. All this will be discussed
in the following. But before that, we shall discuss some
considerations which guided our design.

DESIGN CONSIDERATIONS
A basic concept in object–oriented programming is the

distribution of responsibility between objects, such that
data and functionality is combined in a meaningful way.
Applied to histogramming, this means that a histogram
should not only administrate bin contents, but should take
responsibility for the semantics, i. e. the filling of the bins,
as well. Thus, instead of being filled passively, the his-
togram is just notified when new data is available, where-
upon it performs the actual filling steps itself, in collabora-
tion with other (function) objects.

This leads to a declarative approach, where procedural
elements such as loops and conditional statements are re-
placed by iterator objects and logical expressions between
function objects. Complicated algorithms that are not read-

ily formulated in arithmetic expressions (for example a jet
parton association) can be encapsulated in small, reusable
classes.

A further design consideration has been to the earliest
possible detection of programming errors. Therefore we
follow the strong typing philosophy of the C++ language
and avoid string parsing wherever possible to allow error
detection at compile rather than run time.

Whereas conceptually booking and filling are unified in
our toolkit, the actual filling of the histograms is deferred
until all histograms have been defined and is then per-
formed in a single pass over the data. This reduces I/O load
and permits to reuse the results of complicated calculations
for the filling of multiple histograms per record.

The efficient handling of sets of similar histograms, as
they occur e.g. in differential measurements and data
Monte–Carlo comparisons, is of great importance. In our
toolkit, such sets can be treated as single entities for book-
ing, filling, and operations such as adding or fitting.

SOME EXAMPLES
In this section we will present a couple of simple exam-

ples how our toolkit can be used. We assume that a class
MyTree exists, which holds the data of one record, either
hand–written or generated by RooT’s TTree::MakeClass
method. Histograms are defined in the constructor of a
class AnalysisLoop, which is derived from the base class
EventLoop of our toolkit.

The first example shows how to produce a histogram of
a quantity MET stored in a RooT tree:

class AnalysisLoop: public EventLoop {

public:

AnalysisLoop (MyTree& tree) {

FloatFun& METFun = ntfloatfun (tree, &MyTree::MET);

METHist = new SFH1F("methist", "Missing ET",

50, 0., 200., this, METFun);

}

void output (TFile *psfile, TFile *rootfile) {

// do anything (plotting, fitting, etc.) here!

}

private:

SFH1F *METHist;

};

Our toolkit provides a class SFH1F, derived from RooT’s
TH1F, for self–filling 1–dimensional histograms. As the
example shows, the constructor of SFH1F takes the same
arguments as for a TH1F object, plus 2 additional ones:
The FloatFun object METHist defines what is to be plot-
ted in the histogram, namely the missing transverse en-
ergy, stored in data member MET of the MyTree class. The
pointer this to the EventLoop object tells the histogram
object where to register itself for later filling.

The corresponding main program looks like this:

int main(int argc, const char *argv[]) {

MyTree tree;

AnalysisLoop theLoop (tree);

for (int i = 0; i < tree.fChain->GetEntries(); ++i) {

tree.fChain->GetEntry(i);

theLoop.loop();

}

theLoop.output("out.root","out.ps");

return 0;

}

The method AnalysisLoop::loop is inherited
from class EventLoop, and notifies all registered
self–filling objects to fill themselves. The method
AnalysisLoop::outputcan contain any post–processing
operation desired by the user, in the example the histogram
is just plotted and stored in a RooT file.

Next, we add a cut, in this case we require at least one
b–tagged jet:

IntFun& NBJet = ntintfun (tree, &MyTree::NBJet);

METHist = new SFH1F("methist", "Missing ET", 50, 0, 200,

this, METFun, NBJet >= 1);

The result of the expression “NBJet >= 1” is actually a
function object of a subclass of BaseCut, which is the base
class for function objects returning a bool value.

If several entries of the same quantity are stored per data
record, iterators take care of treating each entry, as shown
in the following example. Note that the arguments of the
SFH1F constructor don’t change. The knowledge of the it-
erator’s existence is passed on by the FloatFun object.

FillIterator& jetIter =

ntfilliterator (tree, &MyTree::NJet);

FloatFun& EtJetsFun =

ntfloatfun (tree, &MyTree::EtJets, jetIter);

EtjHist = new SFH1F("Etjhist", "Jet Energy", 50, 0, 200,

this, EtJetsFun);

Weights are defined like abscissa values with FloatFun
objects. To plot the energy flow from jets as function of
pseudorapidity η, we could therefore write:

FloatFun& etaJetsFun =

ntfloatfun (tree, &MyTree::etaJets, jetIter);

etflowHist = new SFH1F("etflow","Energy flow", 50, -5, 5,

this, etaJetsFun, 0, EtJetsFun);

Caching of any function object needed several times per
event can be achieved like this (cachedObjects is a col-
lection of cached objects that belongs to class EventLoop):

FloatFun& ptJetFun = cached (cachedObjects,

ntfloatfun(tree, &MyTree::ptJets, jetiter));

BASIC ABSTRACTIONS
After these first impressions of how self–filling his-

tograms can be used, we will discuss now the most im-
portant ideas which make it work inside.

Registered Objects: A registered object enters itself
into the collection given in its constructor. The base class
for such collections in the SFH toolkit is called ROList.
It can notify all its members, not only for filling, but also
for any other common operation (see also section on visi-
tors below). The class EventLoop is derived from ROList,

RegO TH1F

RegH1F SFO

SFH1F

Figure 1: Inheritance tree for class SFH1F.

as are the classes managing groups of histograms. A spe-
cial case of a RegO is a registered histogram, which is de-
rived from RegO and the desired RooT histogram class, e.g.
TH1F, as shown in figure 1.

Self–Filling Objects: Self–fillingness can be added to
any registered object by deriving it additionally from the
class SFO. The SFO interface requires that any derived class
implements an argument–less Fill method. In case of a
1–dimensional self–filling histogram, for which the inher-
itance diagram is shown in fig 1, the Fill method looks
roughly like this:

class SFH1F: public RegH1F, public SFO {

public:

void Fill() const {

if (!xfun) return;

if (!iter || iter->reset())

do {

if (!cut || (*cut)()) {

float w = wfun ? (*wfun)() : 1.;

this->TH1F::Fill ((*xfun)(), w);

}

} while (iter && iter->next());

}

// The different constructors are not shown here

private:

FloatFun *xfun, *wfun;

BaseCut *cut;

FillIterator *iter;

};

The information needed for filling is accessed via the
pointers to function objects, which are given to the self–
filling histogram object in the constructor.

Function Objects: In the SFH toolkit, several types of
function objects are used, which differ by the return value
of their operator(). A FloatFun object returns a float,
and can be used for filling or weighting, while a BaseCut

returns a bool and is used to express cuts. Our frame-
work provides common functions such as sin or sqrt and
arithmetic, logical and comparison operators between func-
tion objects and numbers, so that complicated expressions
can be built from simple objects without the need to write
dedicated classes. Comparison operators can be used with
FloatFun or IntFun objects to define cuts, as shown in
the examples.

The interface of the abstract base class FloatFun is
rather minimal:

class FloatFun {

public:

virtual float operator() () const = 0;

virtual const FillIterator *getIterator() const

{ return 0; }

virtual void destroy() { delete this; }

protected:

virtual ~FloatFun() {};

};

The operator() is the central method, it returns the
value of the function object. If multiple values, such as the
pt of several jets, are to be returned, a FillIterator ob-
ject will be involved, which is returned by getIterator.

Only pointers or references to function objects are stored
and passed around, the objects are never copied, otherwise
caching would be impossible. In most cases it would be
a mistake to create automatic instances of such function
objects, which are destroyed automatically when they go
out of scope, while they may still be needed. To prevent this
mistake, all classes derived from class FloatFun should
make their destructor protected, which leads to a compiler
error when the user tries to create automatic instances of
that class. Then, function objects can only be created on
the heap. The method destroy replaces operator delete.

Since FloatFun is an abstract class, generally the
user has to provide a derived class that implements
operator(). However, a common case, namely the access
to a data member in a tree object, is handled by objects of
the template class NTFloatFun, which can be generated by
using the global template function ntfloatfun (the code
for iterator support has been taken out for clarity):

template<class MyTree, class VarType = Float_t>

class NTFloatFun: public FloatFun {

public:

NTFloatFun (const MyTree& tree,

VarType MyTree::* p_mem)

: branchAddress (&(tree.*p_mem)) {}

virtual float operator() () const

{ return *branchAddress; }

protected:

virtual ~NTFloatFun() {}

private:

const VarType *branchAddress;

};

template<class MyTree, class T>

NTFloatFun<MyTree, T>& ntfloatfun (const MyTree& tree,

T MyTree::* p_mem)

{ return *new NTFloatFun<MyTree, T> (tree, p_mem); }

Additionally, there exists a base class IntFun, which is
useful to express conditions on integer quantities, and also
serves as base class for two other important concepts that
will be discussed next.

Iterators: As already mentioned, iterators are used in
cases where potentially more than one entry shall be made
in a histogram for a given data record, for instance the en-
ergy of several jets per event. The interface of the abstract
base class FillIterator is again simple:

class FillIterator: public IntFun {

public:

virtual int operator() () const = 0;

virtual bool next() = 0;

virtual bool reset() = 0;

virtual const FillIterator *getIterator() const

{ return this; }

protected:

virtual ~FillIterator() {}

};

The return value of operator() is an index that typi-
cally is used as array index; a returned bool always indi-
cates whether the index is within the valid range.

In our framework, iterators have two clients that use
different parts of the interface: self-filling objects need
just next and reset, whereas FloatFun and BaseCut

objects normally need only the index value provided by
operator(), and hence often demand just an IntFun in-
stead of a FillIterator. The method getIterator en-
ables self–filling objects to determine whether they have to
use an iterator during filling; it also helps to detect the po-
tential error to mix objects that depend on different iterators
in the same histogram.

The iterator concept offers a number of interesting pos-
sibilities. Similar to the case of FloatFun objects, simple
iterators that run over a range defined by a tree variable can
be generated by a global function ntfilliterator. In
that case, the next method of the iterator will simply in-
crement an index variable by one. More complicated next

methods are possible that select only certain index values,
for instance only numbers that correspond to bottom quarks
in a list of generated particles. This is a possibility to sort
of incorporate a cut into an iterator, which makes it unnec-
essary to explicitly add the respective cut everywhere this
iterator is used. For instance, in an energy resolution study,
one could simply replace a “uds–jet–iterator” by a “b–jet–
iterator” to study their different properties.

Another nice technique is to write an IntFun subclass
that translates the value of an iterator into another index.
For instance, a jet parton association can thus be imple-
mented: The iterator value would signify the jet, and the
result of the IntFun subclass (here called JetPartonFun)
would be the index of the best matching parton.

Binning functions: The second special case of an
IntFun is a BinningFun, where the returned integer is a
bin number. It also provides name and title strings for each
bin, which are used to book groups of histograms with the
same plotted quantity, as discussed in the next section.

Cached Objects: The caching mechanism makes use
of a special list of registered objects, whose members are
notified to invalidate themselves when a new data record is
read in. Any function object can be cached using the global
function cached.

Groups of Histograms: A powerful tool are groups his-
tograms which show the same quantity for several non–
overlapping data subsets. These occur in data Monte
Carlo comparisons as well as in differential measure-
ments. A SetOfHistograms, which is differential in one
quantity, can be booked by just adding a BinningFun

object to the argument list of the TH1F constructor,
whereas a 2–dimensional MatrixOfHistograms takes
two BinningFun objects. Self-filling versions of both

types of collections exist. Such a self–filling collection
of histograms is considerably more efficient than the same
number of single self–filling histograms. Most operations
possible for a TH1, e.g. addition, multiplication, are also
implemented for sets and matrices of histograms. Fur-
thermore, they provide methods to generate summary his-
tograms containing per–histogram–information such as to-
tal content or mean value in each bin.

Visitors: An important consequence of grouping sim-
ilar histogram into sets and matrices is that they can be
acted on together very conveniently by applying the vis-
itor pattern [2] to the list. The SFH toolkit comes with
many ready to use visitor classes for standard cases like
fitting a TF1 function to each histogram or changing his-
togram attributes. They all inherit from the abstract base
class HVisitor, from which the user can derive other vis-
itor classes tailored to the tasks at hand.

CONCLUSIONS
Although originally written to facilitate our own analysis

within the H1 experiment with its object–oriented analysis
framework, the SFH toolkit was easily used in and proved
valuable to several analyses at ATLAS and D0.

The function objects were originally just introduced to
make the self–fillingness possible. From this simple start-
ing point, further benefits emerged. The lightweight inter-
face of these classes encourages the encapsulation of algo-
rithms, making the analysis code more modular. The pos-
sibility to form expressions of function objects and their
internal, thus hidden, collaboration with iterators leads to
a very concise way of performing complicated calculations
and maintaining a declarative programming style. This has
turned out to be far more powerful than we had originally
anticipated.

The subclasses of EventLoop provide a good way to
structure the analysis, because several objects of different
such classes can be employed concurrently within the same
program. The tree class, which can be conveniently gener-
ated by TTree::MakeClass, is used just as a store for the
data, and does not need to be edited by the user. This makes
it easy to deal with changes in the tree structure.

Documentation and further resources for this software
are available on the web[3].

ACKNOWLEDGMENTS
We cordially thank family Berger for their generous hos-

pitality in Interlaken.

REFERENCES
[1] R. Brun, F. Rademakers et al., “RooT. An object–oriented

analysis framework.” http://root.cern.ch/.

[2] E. Gamma et al., “Design Patterns,” Reading, MA (Addison-
Wesley) 1995.

[3] B. List, J. List, “SFH: Self–Filling Histograms.”
http://www.desy.de/~blist/sfh/.

