

Overall Layout

The VTX Detector

- High precision detector close to the beam pipe (R(min) = 1.5 cm)
- Several technologies are under discussion
 - Active pixel sensors (a la LHC technology)
 - CCD based sensors (SLD technology)
 - CMOS based sensors (new development)

SI ladders are "stretched"

The SIT and the FCH

Momentum Resolution

Goal: recoil mass distribution not limited by detector effects

TPC Readout Technology

"traditional" wire chamber readout:

- Well understood, stable system
- "large" granularity
- Mechanically complicated
- Systematic effects through $\vec{E} \times \vec{B}$ effect

Alternative solution:

- Based on micro-pattern gas chambers
- GEM/ micromegas / ... chambers
- Mechanically potentially simpler
- Less material
- Less systematic effects (potentially)
- Not yet prooven in large scale projects

GEM: Gas Electron Multiplier

Protoype Results

TPC prototype equipped with GEM readout exists in Hamburg

Thanks to Ron Settles for providing the TPC fieldcage

Ties Behnke: The TESLA tracking system

Single Point Resolution

GEM readout:

- 2D readout possible
- Intrinsic dimension of the GEM is 100um
 - Much too large number of pads

One possible solution: specially shaped pads ("Chevron") enlarge the charge sharing between neighbor pads improve the resolution

Results from simulation:

Chevron: small dependence on drift good resolution (100–150 um)

Protoype under construction

Prototype Results

dE/dx Resolution

Particle Identification

 Main requirement for particle identification: gain uniformity

Observed variations: around 5% across a GEM

Problem

- need <2% for decent performance
- GEM production not optimised for uniformity
- Technology for better GEM exists at CERN, but needs to be tested and verified
- Calibration?

Endplate Design

Overall endplate layout:

Endplate Design

First iteration of a design for a GEM based endplate

Basic element: a GEM tower:

2 amplification GEMs 1 gating GEM to suppress the positive ions Spacer frame to separate two GEMs:

COMPASS prototype, Sauli, CERN

Prototype GEM tower is currently being constructed at DESY for test in the TPC

Field Cage

Fieldcage:

- Based on ALEPH/ALICE type field cage
- STAR solution (gas insulator) disfavored because of space
- Designed for V<100kV</p>

- Mechanical rigidity: Rohacell – Epoxy – honeycomb structure
- Electrical properties: multiple mylar sheets + Rohacell/epoxy
- Voltage divider: use miniature surface mount devices: test in Karlsruhe sucessful
- Further R&D is needed to optimise the design

Pattern Recognition

- Intense simulation effort within the ECFA DESY study:
 - Based on standard technology: GEANT3, Fortran, etc.
 - Complete simulation framework BRAHMS has been developed
 - Full simulation
 - Pattern recognition for central detector
 - Event visulation tool based on open GL
 - Reuse as much as possible existing software tools (LEP/ SLD/ ...)

Event Display

Visualisation software based on openGL toolkit

Easily interfaced to BRAHMS (full simulation) SIMDET (fast simulation)

status:

software exists in released form still somewhat unstable, but basically usuable independent of GEANT3/ GEANT4

Contact: Harald.Vogt@desy.de

http://www-zeuthen.desy.de/linear_collider

Tracking Performance

preliminary results for tracking performance: look at dd events

excellent reconstruction efficiencies even in complicated environment

Conclusions

Tracking system for a detector at TESLA:

- Large TPC
- High precision VTX detector
- Basic performance goals have been met in simulation
- R&D is commencing for
 - SI detectors (CCD/APS/CMOS options)
 - **TPC**
 - Overall design, especially endplate
 - GEM characteristics/ optimisation
 - Electronics/ readout
 - Simulation
 - Calibration

Development work is happening in framework beyond just TESLA: groups involved are from Europe Canada USA