for the DESY/ ECFA study detector

Ties Behnke DESY 1-May-1999

- the TPC tracker
- requirements from physics
- a TPC at TESLA: can this work?
- results from simulation
- technical issues
- conclusion

A Detector for TESLA

- general design criteria:
 - excellent vertex and momentum resolution
 - excellent tracking with high granularity
 - calorimetry with high granularity both transverse and longitudinally
 - hermetic coverage down to 20 mrad or better

Overall very good energy flow measurement

• first design iteration proposed in the TESLA CDR, 1997

A Detector for TESLA

- General concept: Large detector, gaseous tracking, large acceptance
- main tracking components:
 - high precision vertex detector (4-5 layers)
 - large TPC tracking chamber

The TPC Tracker: Performance goals

• physics drives the required momentum resolution: e.g. recoil mass measurement in $e^+e^- \rightarrow Z^0H, Z^0 \rightarrow \mu^+\mu^-$

Advantage of a TPC

• tracking up to large radii

- large redundancy through larger number of space points
 maybe advantages for pattern recognition?
- true 3D reconstruction
- thin detector

• dE/dx comes "for free"

TPC at TESLA: can this work?

• basic problem:

 $\Delta t_{\mathrm TESLA} = 339 \mathrm{ns}$ BUT $t_{\mathrm drift} = 50 \mu \mathrm{s}$

TPC sees \approx 150 bunches in one "picture"

- number of 3D (readout) pixels in TPC $\approx 7 \times 10^7$
- this corresponds to the following occupancies in the chamber for a "good" events (i.e., there is some interesting physics happening)

type	per BX	150 BX	hits
e^+e^- physics		22	3000
$\gamma\gamma$ physics	0.7	105	15000
photons	1350	202500	15000
beam beam bgd	1	150	100
neutron background	1000	150000	5000
total			38000

See talk by N. Tesch Friday afternoon

• This corresponds to an occupancy of <1%

TPC and TESLA: an event

- integrated over 150 bunch crossings
- contains physics and estimated background hits

A WW decay at 500 GeV

WW decay + 3 $\gamma\gamma$ events

Track Finding

- Need to reconstruct the correct bunch crossing
- Average good event:
 - one e^+e^- physics events
 - 3 $\gamma\gamma$ events
 - approximately 15000 background hits
- Simulation of such an events in θz space:

- Clear distinction between top(0 BX) and bottom (10 BX)
- Background adds appros. flat level of around 20 hits / bin

Track finding and reconstruction in TPC should not be a problem

dE/dx at a TPC

• per track 118 samples: expect at 1 bar reasonable dE/dx.

• predicted resolution: 7.5%

Kaons from $q\overline{q}$ events at 500 GeV

The Role of dE/dx

- particle ID in general not as important as at present machines
- some possible physics uses:
 - background cleanup (charm tag? bottom tag?)

TPC readout

- number of 3D space points: 3×10^7
- need ungated operation to handle bunch trains without deadtime

conventional solution: wire chamber readout with PADS. around 700k channels typical PAD size $\approx 10 \times 10$ mm

alternative solution: GEM readout simple, thin, high granularity true 2D readout

for more details: see talk by M. Gruwé

TPC: GEM readout Simulation

• problem: resolution might degrade when using GEMS

- Simulate the response of a TPC with GEM readout using PADS (roughly $10 \times 10~{\rm mm}$)
- plot the reconstruction bias:

- observe significant bias for rectangular pads and GEM readout
- "solution" for rectangular pads: huge number of channels.

TPC: GEM readout

 proposed solution for roughly equal number of channels (700 k):

- "Chevron" pads.

much reduced bias, linear dependence input - output

GEM with special PAD geometry seems attractive solution

GEM readout for a TPC

(similar points apply to other technologies like micro - omegas etc.)

- advantages:
 - mechanically simple
 - compact, good granularity
 - possibility of thinner and mechanically simpler end caps
 - technically feasible already today
 - suppression of ion feedback: $f_{\rm ion} < 10\%$ from calculations and measurements.

disadvantages / open questions

- stability / long term operation
- resolution achievable?
- gas gain is smaller than in conventional wire chambers: might need two GEMS in series.
- ion feedback suppression not large enough? Needs experimental verification.

plot of radiation length vs. theta:

Conclusions

- TPC a central part of the ECFA / DESY detector design for TESLA
- Operating a TPC in this environment should be possible and should not present un-surmountable problems.
- Occupancy on average is expected to be below 1%
- Large redundancy and large number of space points are particular advantages of a TPC
- Possibility of dE/dx is interesting for some selected physics topics.
- TPC offers advantages for the material budget
- Ungated operation is needed to be able to handle TESLA bunch train structure without deadtime
- Ungated operation requires new readout technologies (e.g. GEM's instead of wire chambers.
- A solution for a GEM readout has been proposed and is under investigation