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1 Prelude
This talk is based on [1],1 which builds upon earlier work [3,4]. In this talk, I will exclusively
consider the planar limit of N = 4 super Yang–Mills and ABJM theory.

2 Graßmannian Integral and On-Shell Diagrams
Before explaining the deformations, I will give a mini-review of the Graßmannian integral and
on-shell diagrams [5], as these are central to everything below.

The Graßmannian Integral. The Graßmannian integral Gn,k is defined as an integral over
the Graßmannian space of k-planes in n-dimensional complex space,

Gn,k(Wi) =
∫ dk·nC
|GL(k)|

δ4k|4k(C · W)
M1 · · · · ·Mn

, (2.1)

where the twistor variables Wi parametrize the external states.2 In (2, 2) signature, the twistors
are given by Wi = (µ̃i, λ̃i, η̃i), where µ̃i is the Fourier transform of λi, and λi, λ̃i parametrize
the momentum, paȧi = λai λ̃

ȧ
i . The Graßmann variables η̃i parametrize the superfield Φi. The

denominator consists of minors Mi = |Ci, . . . , Ci+k−1| of the matrix C. Converting back to
conventional spacetime variables, the delta functions become

δ4k|4k(C · W) −→ δ2(n−k)(CT · λ) δ2k(C · λ̃) δ4k(C · η̃) . (2.2)
1Note also [2], which has some overlap with [1].
2In [1] the conventional twistors are denoted by Zi, and the momentum twistors are denoted by Wi. Here we

use the converse notation. Both conventions are used in the literature.
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The integral (2.1) is to be interpreted as a multidimensional contour integral. After localizing
all but four of the bosonic delta functions (the remaining four will become the momentum
conservation delta functions), k(n− k)− (2n− 4) = n(k− 2)− k2 + 4 integrations remain, which
are supposed to be localized on zeros of the minors Mi by the residue theorem.

The Graßmannian integral looks rather innocent, but in fact contains a wealth of information.
By picking the right integration contour (poles), it generates all tree-level amplitudes of N = 4
super Yang–Mills theory, as well as all leading singularities of loop amplitudes in this theory.

On-Shell Diagrams. The individual residues of the Graßmannian integral can be identified
as on-shell diagrams. These are planar graphs with trivalent vertices of two types: On-shell
three-particle MHV amplitudes (black dots), and on-shell three-particle anti-MHV amplitudes
(white dots). The vertices are connected to each other by internal lines, which indicate that
the respective on-shell variables should be identified and integrated over, with the integration
measure d2λ d2λ̃ d4η̃/|GL(1)|. Some of the lines on the vertices remain as external lines. As an
example, this is the diagrammatic form of the five-point MHV amplitude:

(2.3)

At tree level, on-shell diagrams provide the individual terms in BCFW expansions of the ampli-
tude. At loop level, reduced on-shell diagrams (which can be obtained from the Graßmannian
integral) form the leading singularities of loop amplitudes. Unreduced diagrams (which cannot be
obtained from the Graßmannian integral) can be used to construct the complete loop integrand
at any loop order [5].

The reformulation of scattering amplitudes in terms of the Graßmannian integral and on-shell
diagrams is a great and beautiful story that has fascinating relations to topics of current interest
to mathematicians in projective geometry and combinatorics. In particular, it provides a direct
(recursive) construction of the complete planar loop integrand to any loop order, without making
any reference to Feynman diagrams or gauge symmetry.

Caveat. But there is a caveat. There is currently no known practical way to integrate the
integrand. This is of course not unexpected, as N = 4 SYM is a massless, conformal theory,
and hence scattering amplitudes are not well-defined. Conventionally, one employs dimensional
regularization to get a well-defined result. However, doing so would require us to translate
the integrand back to the “conventional” space-time description. But then all the beautiful
structure would get lost, and nothing would be gained. In particular, dimensional regularization
breaks the conformal symmetry. But even for quantities that are known to be finite in exactly
four dimensions, such as the ratio function Rn = An/AMHV

n , we lack an integration procedure
that manifestly cancels all the divergences among the individual terms and allows to actually
perform the integration.
This provides the motivation to study deformations of the Graßmannian integral and/or the
on-shell diagrams. Ideally, such a deformation would preserve as much of the symmetries of
these quantities as possible.
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3 Symmetries
Scattering amplitudes, the Graßmannian integral, and on-shell diagrams are functions of n
twistor variables Wi. The symmetries of these objects are:

• Superconformal symmetry. The superconformal symmetry group of N = 4 SYM is
psu(2, 2|4), and in twistor variables, its generators take the form

JAB =
n∑
i=1
WAi

∂

∂WBi
− (supertrace) . (3.1)

• Dual superconformal symmetry [6]. This is an entire additional copy of psu(2, 2|4) which,
in twistor variables, acts in a very non-local representation.3

• The conventional and the dual superconformal symmetry close into Y(psu(2, 2|4)), which
is an infinite-dimensional Yangian symmetry algebra [7]. The Yangian algebra is or-
ganized into infinitely many levels. Level zero consists of the conventional psu(2, 2|4)
superconformal symmetry. The level-one generators take the general form

Ĵa = fabc
n∑

i,j=1
i<j

Jbi J
c
j +

n∑
i=1

ui J
a
i , (3.2)

where Jai are the level-zero generators acting at site i.4 The second term is not present in
the representation for the undeformed amplitudes, but it will appear for the deformed
amplitudes. All higher-level generators are obtained from the first two levels by iterated
commutators (modulo the Serre relations).

4 Deformations: 4d N = 4 SYM
The study of the deformations I will discuss initially was motivated by the observation of
B. Zwiebel that the tree-level S-matrix equals a specific piece of the spin-chain dilatation
operator [8]. For the dilatation generator, there is a construction in terms of an R-matrix. The
R-matrix in particular depends on the spectral parameter, which is central to integrability. The
motivation to study deformations is to introduce something akin to the spectral parameter to the
scattering amplitude problem. The hope is that one could do analysis in this new parameter, and
extract new information about scattering amplitudes. Perhaps this would lead to a regulated,
integrated amplitude.
In the following, I will mostly review earlier results on deformations [3,4]. We want to study
deformations that preserve a maximal amount of symmetry. Ideally, they should preserve the
complete infinite-dimensional Yangian symmetry. One can start with the simplest building

3The dual superconformal symmetry becomes local in momentum-twistor coordinates Zi = (λi, µi, ξi), where
µȧi = xaȧi εabλ

b
i , ξAi = θAai εabλ

b
i , and xi − xi+1 = pi, θi − θi+1 = λiη̃i.

4For the linear level-zero representation (3.1), the bilocal combinations in the level-one generators take the
form fabc J

b
i J

c
j = (−1)C JA

i CJ
C

B − (i↔ j).
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blocks, the tree-level three-point amplitudes5

Â◦3 = α3

α2

1 3

2

=
∫ dα2

α1+a2
2

dα3

α1+a3
3

δ4|4(C◦ · W) ' δ4(P ) δ4(Q̃)
[12]1+a3 [23]1−a2−a3 [31]1+a2

,

Â•3 = α1

α2

1 3

2

=
∫ dα1

α1+a1
1

dα2

α1+a2
2

δ8|8(C• · W) ' δ4(P ) δ8(Q)
〈12〉1−a1−a2〈23〉1+a1〈31〉1+a2

, (4.1)

where
C◦ =

(
1 α2 α3

)
, C• =

(
1 0 α1
0 1 α2

)
, (4.2)

andWA
i are twistor variables that parametrize the external states. By direct inspection, one can

show that these vertices are invariant under the Yangian symmetry with evaluation parameters
{u1, u2, u3} provided that

Â◦3 : u+
1 = u−3 , u+

2 = u−1 , u+
3 = u−2 ,

Â•3 : u+
1 = u−2 , u+

2 = u−3 , u+
3 = u−1 , (4.3)

where u±i = ui ± ci, and ci are the local central charges, that is they are the eigenvalues of the
local central charge generator

Ci = −WC
i

∂

∂WC
i

. (4.4)

In terms of the deformation parameters ai, they read

Â◦3 : c1 = a2 + a3 , c2 = −a2 , c3 = −a3 ,

Â•3 : c1 = a1 , c2 = a2 , c3 = −a1 − a2 . (4.5)

Deformed higher-point diagrams can be obtained by iteratively gluing three-point vertices using
on-shell integration. Whenever one glues two invariants, or glues two external lines of a single
invariant, the result will again be invariant, as long as the evaluation parameters u, u′ and
central charges c, c′ on the glued lines satisfy [4]

u = u′ , c = −c′ . (4.6)

Iterating this procedure, one can construct deformed Yangian-invariant versions of all on-shell
diagrams. Combining the conditions (4.3) with the gluing conditions (4.6), the parameters of
all deformed diagrams must satisfy �

�
�

u+

i = u−σ(i) , (4.7)

where σ is the permutation that is associated to the diagram. It is obtained from the diagram
by following the “left-right paths” through the diagram, turning right at each black (MHV)
vertex, and left at each white (MHV) diagram. For example, the permutation associated to the
five-point MHV diagram (2.3) is {3, 4, 5, 1, 2}.6

5 Here, [ij] ≡ εα̇β̇λ̃α̇i λ̃
β̇
j , 〈ij〉 ≡ εαβλαi λ

β
j , P ≡

∑n
i=1 λiλ̃i, Q ≡

∑n
i=1 λiηi, and Q̃ ≡ ([12]η3 + [23]η1 + [31]η2).

6Tree-level MHV amplitudes are top-cell diagrams with k = 2. In general, all top-cell diagrams are
characterized by permutations that are cyclic shifts by k sites.
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In summary, we have obtained Yangian-invariant deformations for all on-shell diagrams.
Every deformed diagram is characterized by n central charges c1...n and n evaluation parameters
u1...n, subject to n constraints (4.7). In the undeformed case, the central charge operator (4.4)
is related to the helicity via

hi = 1− Ci . (4.8)
Thus one could interpret the deformations as deformations of the helicities of the external states.

Note that the above deformations at this stage are purely formal mathematical constructions,
and do not constitute scattering amplitudes for any known theory. (And perhaps such a theory
is unlikely to exist.) Before discussing the possible use of these deformations, I want to discuss
the ABJM case, whose diagrams resemble conventional integrable systems more closely than
the N = 4 SYM diagrams.

5 Deformations: 3d ABJM
For all the nice structures of 4d N = 4 SYM, counterparts have been found in the three-
dimensional ABJM theory. So far, the ABJM avatars have usually been (technically) more
complicated than in the N = 4 case. Here, we finally have a situation where the analysis is
technically simpler in ABJM theory than in N = 4 SYM.

Also in ABJM theory, there exists a Graßmannian integral [9], and on-shell diagrams [10,11]
that can be combined to form the tree-level amplitudes and loop integrands of the theory. Hence
we can try to deform these structures in a similar way as in the 4d case.

The symmetry algebra of ABJM amplitudes is the Yangian Y(osp(6|4)). In contrast to
the four-dimensional case, the little group of massless momenta is trivial in three dimensions,
and hence there is no notion of helicity, and there are no local central charges that could be
deformed. Nevertheless, deformations are possible.

5.1 Deformed On-Shell Diagrams
The simplest amplitude in ABJM theory is the four-point amplitude, and it can be deformed as
follows:

Â4(z) =
∫ dθ

sin(θ)1+z δ
4|6
(
C(θ) · Λ

)
= δ3(P ) δ6(Q)
〈12〉1−z〈23〉1+z , (5.1)

where ΛA = (λa, ηA) parametrizes the external on-shell superfields, and

C(θ) =
(

1 0 i cos(θ) i sin(θ)
0 1 −i sin(θ) i cos(θ)

)
. (5.2)

This deformed amplitude is invariant under the Yangian generators with evaluation parameters
{u1, . . . , u4}, provided that7

u1 = u3 , u2 = u4 , z = u1 − u2 . (5.3)

Pictorially, the fundamental ABJM four-vertex is

z = uj − uk

uj

uk

. (5.4)
7Actually, z = ±(u1 − u2), where the sign depends on which columns in the matrix C(θ) are set to the unit

matrix. The sign will not be essential here and is thus omitted.

5



Again, higher-point diagrams can be obtained by iteratively gluing four-point vertices together
by on-shell integration. Yangian invariance is preserved as long as the evaluation parameters u,
u′ associated to the two glued lines are identical. Thus every deformed 2k-point diagram will
depend on k independent evaluation parameters ui, and the parameters zi at the vertices are
differences of the evaluation parameters associated to the two lines that cross at the respective
vertex. Here is a simple example:

u1
u2

u3

z1

z2

z3
z1 = u1 − u2 ,

z2 = u1 − u3 ,

z3 = u2 − u3 .

(5.5)

Diagrams of this type look reminiscent of vertex models, with vertex parameters, and rapidity
variables on each line. Also, these diagrams satisfy a triangle inequality:

z1

z2

z3
=

z2

z1

z3
, (5.6)

which holds for any triangle of three vertices within a bigger diagram. This triangle equality
looks exactly like a Yang–Baxter equation. As we shall see, this is not a coincidence.

5.2 R-Matrix Construction
We can reformulate the above in terms of an R-matrix, which makes the above construction
very reminiscent of conventional integrable models. Define the operator

(Rjk(z) ◦ f)(. . . , Λj, Λk, . . . ) ≡
∫

dΛ′ dΛ′′A4(z)(Λj, Λk, iΛ′, iΛ′′) f(. . . , Λ′′, Λ′, . . . ) . (5.7)

Pictorially:

Rjk(z) ◦
j

k

f =
Λ′′

k Λ′

j

f
z

. (5.8)

By the explicit form of the four-vertex (5.1), the R-operator acts by integrating over a weighted
rotation of two external legs,

(Rjk(z) ◦ f)(Λ) ≡
∫ dθ

sin(θ)1+z f(Λ)
∣∣∣∣(Λj

Λk

)
→ i

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)(
Λj

Λk

) (5.9)

By the above discussion of deformed on-shell diagrams, acting with the R-operator is equivalent
to gluing the four-vertex to an invariant, and hence preserves invariance (up to an exchange of
the two evaluation parameters). That is

Ĵa(. . . , uj, uk, . . . )Rjk(z) = Rjk(z) Ĵa(. . . , uk, uj, . . . ), (5.10)
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when acting on Yangian-invariant functions.
We can further define a Lax operator

Li(u) ≡ u1 +
∑
a

Jai ea , (5.11)

where Jai are the level-zero generators of osp(6|4) acting on the external state i, and ea denotes
the generators of the fundamental representation. The Lax operator gives rise to a monodromy
operator

T (u0, ~u) ≡ L1(u0 − 1
2u1)L2(u0 − 1

2u2) . . . L2k(u0 − 1
2u2k). (5.12)

By standard procedure,8 expanding the monodromy yields the Yangian generators:

T (u0, ~u) = u2k
0 + u2k−1

0 J(0)(~u) + u2k−2
0 J(1)(~u) + . . . (5.13)

where J(n)(~u) is (up to additive constants and combinations of lower-level generators) the level-n
generator with evaluation parameters ~u. Now the preservation of Yangian invariance can be
encoded in the RLL relation

Rij(uj − ui)Li(u0 − 1
2ui)Lj(u0 − 1

2uj) = Li(u0 − 1
2uj)Lj(u0 − 1

2ui)Rij(uj − ui) , (5.14)

which again holds when the operators act in the space of Yangian invariant functions. Pictorially:

v u

Rij(u− v)

Li(v) Lj(u)
=

v u

Rij(u− v)

Lj(v)Li(u)
(5.15)

The R-operator moreover satisfies the Yang–Baxter equation (cf. the triangle equation above),9

Rij(w − v)Rj`(w − u)Rij(v − u) = Rj`(v − u)Rij(w − u)Rj`(w − v) . (5.16)

Taking all of this together, we have found an R-matrix for the representation of Y(osp(6|4))
that can be written in Graßmanninan integral form, which seems to not have been known.

Invariants. We can now construct Yangian invariants by acting with a chain of R-matrices
on a suitable “vacuum”,

Ri`,j`(z`) . . . Ri1,j1(z1)Ω2k , (5.17)

where the vacuum Ω2k is given by the simplest possible 2k-point invariant, which is a product
of two-point invariants:

Ω2k =
k∏
j=1

δ2|3(Λ2j−1 + iΛ2j) . (5.18)

8See e.g. [12].
9This can be shown to hold by noting that the rotations in the three R-matrices parametrize the three-

dimensional rotation group in terms of Euler angles. The two sides of the equation are related by a coordinate
transformation. One can verify explicitly that the product of measure factors in the integrals is kept invariant
by the coordinate transformation.
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The invariance of (5.17) can now be shown by acting with the monodromy operator. Using the
RLL relation, the R-matrices can be pulled through the monodromy operator one by one, until
the monodromy acts on the vacuum. One can easily see that the vacuum is an eigenstate of the
monodromy, with eigenvalue ∏2

j=1 k(u0 − uj/2), and hence (5.17) is annihilated by all Yangian
generators. For example, the action of the monodromy on the simple six-point diagram (5.5)
can be pictorially represented as

T (u0, ~u) = . (5.19)

The monodromy matrix (chain of Lax operators, gray dots) can be pulled through the R-matrices
(black dots) until it acts on the vacuum (below the white dots).

6 Amplitudes and the Deformed Graßmannian Integral
Now that we have found Yangian-invariant deformations of all on-shell diagrams, can we use
them to construct deformed invariant amplitudes (or loop integrands)? For MHV amplitudes in
N = 4 SYM (and for the four- and six-point amplitudes in ABJM theory), the tree amplitudes
consist of a single on-shell diagram; in this case we already have a consistent deformation. What
about higher-point and non-MHV amplitudes? Generally, tree amplitudes and loop integrands
can be written as a sum of BCFW terms, and each term in the decomposition equals a single
(undeformed) on-shell diagram. Can one combine the deformed diagrams in a similar way?

In order to sum multiple diagrams sensibly, they must all live in the same representation
of the Yangian, that is the same evaluation parameters must be associated to their external
legs. In the N = 4 SYM case, we also want to demand that the central charges are the same
on all diagrams in a sum.10 In such a putative sum of m deformed diagrams, the evaluation
parameters u1...n and central charges c1...n must obey the invariance conditions

u+
i = u−σ(i) (6.1)

for all m permutations σ associated to the individual diagrams. (For ABJM, the ci must be set
to zero in these equations.) Experimentally, one finds that these relations do not leave room
for non-trivial ui and ci beyond the six-point amplitude in N = 4 SYM and the eight-point
amplitude in ABJM theory.11 The failure of a naive summation of deformed diagrams is no
surprise, as the number of BCFW terms grows factorially, and each term requires n constraints
on the deformation parameters.
Is there still a way to define a Yangian-invariant deformed amplitude, even though deforming
the BCFW expansion term by term fails? A natural starting point to investigate this question
is the Graßmannian integral. After all, this integral produces all the on-shell diagrams (BCFW
terms).

10We could relax the condition of uniform central charges, but the interpretation of a sum of diagrams with
non-uniform central charges would be unclear.

11The permutations for any tree amplitude are constructed in [5] for N = 4 SYM, and in [10] for ABJM. For
N = 4 SYM, they are provided by the Mathematica package [13].
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The Deformed Graßmannian Integral. In fact, the Graßmannian integral can be deformed
directly. This can be seen immediately by noting that the Graßmannian integral is nothing
but the top-cell diagram, that is the reduced diagram associated to the permutation σtop =
(k+ 1, k+ 2, . . . , k), a k-fold cyclic shift. It therefore admits a deformation with u+

i = u−σ(i). The
deformed integral can be written as12

Gn,k(Wi) =
∫ dk·nC
|GL(k)|

δ4k|4k(C · W)
M1+b1

1 · · · · ·M1+bn
n

. (6.2)

Since the twistors Wi only appear in the delta functions, the action of the local central charge
operator

Ci = −WCi
∂

∂WCi
(6.3)

can be transformed into a rescaling of column i of the matrix C. This allows to relate the
exponents bi to the central charges,

ci = −(bi−k+1 + · · ·+ bi) , (6.4)

which implies
bi = 1

2(u−i − u−i−1) = 1
2(u+

i−k − u+
i−k−1) . (6.5)

At the level of the Graßmannian integral, we can therefore define a consistent deformation for
all tree-level amplitudes!

The question is how this integral is to be interpreted. As in the undeformed case, the
bosonic delta functions can be used to localize (2n− 4) of the integrations. But for non-MHV
amplitudes, some integration variables remain. In the undeformed case, these are localized
on poles at zeros of the minors Mi. But in the deformed case, the poles degenerate into cuts
due to the non-integer exponents. One could reduce the space of deformation parameters by
setting some of the bi to zero, and localize the integration on the poles as in the undeformed
case. Doing this in all possible ways reproduces all deformed on-shell diagrams that I discussed
above. But for reproducing the tree amplitudes in the undeformed limit, one quickly runs into
the case that all the parameters bi need to be set to zero. This just corresponds to the fact that
the BCFW decomposition cannot be deformed consistently term by term.

The task is thus to find a sensible contour for performing the remaining integrations in the
Graßmannian integral in the presence of non-zero deformation parameters.

7 Outlook
We have significantly enlarged the class of known invariants of the Yangian representations
relevant for scattering amplitudes, which can be seen as an interesting result in its own right.
Whether these generalized invariants will be useful for scattering amplitudes is not entirely
conclusive at present. But the fact that the complete Yangian symmetry can be preserved, and
the similarity to known integrable structures gives reason for hope that they will be useful for
the study of scattering amplitudes. Immediate tasks include:

• Find a useful integration contour.
12Here I will focus on the N = 4 SYM case. All the statements hold analogously for ABJM theory.
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• Once a contour is specified, investigate deformed loop integrands. These are combinations
of tree amplitudes and their forward limits; hence once deformed tree amplitudes are
defined, the study of deformed loop integrands should be possible.

• “Lift” the deformations to the amplituhedron [14]. This is a geometric object that
manifestly sums all BCFW terms, hence the problem of combining multiple deformed
terms should not arise in the first place.

Acknowledgment: I thankfully acknowledge support by a Marie Curie International Outgoing
Fellowship within the 7th European Community Framework Programme under grant PIOF-GA-
2011-299865.
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