## A Generating Equation for Integrable Charges

#### Till Bargheer, Niklas Beisert, Florian Loebbert

Max–Planck–Institut für Gravitationsphysik Albert–Einstein–Institut Potsdam–Golm Germany

#### Mathematica Summer School on Theoretical Physics June 18, 2009

#### Framework for arXiv:{0807.5081,0902.0956}

June 18, 2009 Till Bargheer: A Generating Equation for Integrable Charges

## Integrable Spin Chains I

Consider a spin chain model, i.e. a tensor product

 $\ldots \otimes \mathbb{V} \otimes \mathbb{V} \otimes \mathbb{V} \otimes \mathbb{V} \otimes \mathbb{V} \otimes \ldots$ 

of vector spaces (generalized spins), all transforming in a common representation of a symmetry algebra g.

Focus on models with *local* and *homogeneous* interactions/charges:

$$\mathcal{L}_k = \sum_a \mathcal{L}_k(a) = \sum_a \underbrace{\downarrow}_a \underbrace{\downarrow}_a \underbrace{\downarrow}_a$$

This type of spin chain finds application in the computation of anomalous dimensions of local gauge invariant operators of  $\mathcal{N}=4$  SYM.  $[\frac{\text{Minshan}}{\text{Zarembi}}]_{\text{hep-th/Od07277}}]$  Gauge theory spin chains are integrable, i.e. they feature an infinite set of commuting charges

$$\mathcal{Q}_r = \sum_k \mathcal{L}_k, \quad r = 1, \dots, \infty, \qquad [\mathcal{Q}_r, \mathcal{Q}_s] = 0, \qquad \mathcal{Q}_2 = \mathcal{H}.$$

## Integrable Spin Chains II

The charges of gauge theory spin chains feature a perturbative range expansion

$$\mathcal{H} = \mathcal{Q}_2 = \underbrace{\overset{\circ}{\underset{\bullet}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{$$

where  $\lambda$  is the coupling constant.

- ► As an example, consider commuting charges on a spin chain with gl(n) symmetry. In this case, all symmetry invariant operators L<sub>k</sub> are *permutations*. These are the building blocks of the charges.
- Permutations  $\pi \in S_n$  are represented in Mathematica as

```
Perm[\pi(1), ..., \pi(n)].
```

For example, Perm[3,4,1,2] maps  $\{1, 2, 3, 4\}$  to  $\{3, 4, 1, 2\}$ .

#### Goal: Understand long-range integrable spin chains better!

#### **Deforming Short-Range to Long-Range Chains**

Integrable charges can be computed by brute force. (cf. talk by Florian) [Beisert] Klose]

Different approach: Deform a given set of (short-range,  $\lambda = 0$ ) integrable charges  $Q_r$  through a generating equation  $\begin{bmatrix}
\text{Bargheer} \\
\text{Beisert} \\
\text{Loobert}
\end{bmatrix}$ 

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \mathcal{Q}_r(\lambda) = i \big[ \mathcal{X}(\lambda), \mathcal{Q}_r(\lambda) \big],$$

where  $\lambda\approx 0$  is the deformation parameter.

The form of the generating equation guarantees that the algebra obeyed by the charges is invariant under the deformation. By the Jacobi identity

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \left[ \mathcal{Q}_r(\lambda), \mathcal{Q}_s(\lambda) \right] = i \Big[ \mathcal{X}(\lambda), \left[ \mathcal{Q}_r(\lambda), \mathcal{Q}_s(\lambda) \right] \Big].$$

Therefore the structure constants are  $\lambda$ -independent,

$$\left[\mathcal{Q}_r(\lambda), \mathcal{Q}_s(\lambda)\right] = f_{rst} \mathcal{Q}_t(\lambda) \quad \xrightarrow{\mathrm{d}/\mathrm{d}\lambda} \quad \frac{\mathrm{d}}{\mathrm{d}\lambda} f_{rst} = 0.$$

In particular, if the initial charges commute, f<sub>rst</sub> = 0, also the deformed charges Q<sub>r</sub>(λ) commute.
 ⇒ The deformation preserves integrability.

## Deformation Operators $\mathcal{X} = ?$

Generating equation:

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \mathcal{Q}_r(\lambda) = i \big[ \mathcal{X}(\lambda), \mathcal{Q}_r(\lambda) \big],$$

What are the required properties for the deformation operator  $\mathcal{X}$ ?

- ▶ The commutator between  $\mathcal{X}(\lambda)$  and the charges  $\mathcal{Q}_r(\lambda)$  has to be well-defined.
- The deformed charges  $Q_r(\lambda)$  should again be local and homogeneous as required by gauge theory.

With suitable operators  $\ensuremath{\mathcal{X}}$  , long-range integrable spin chains can be constructed.

What are suitable deformation operators  $\mathcal{X}(\lambda)$ ?

#### $\mathcal{X} = \text{Boost Operators}$

One suitable type of operator: Boost operators

$$\mathcal{L}_k = \sum_a \mathcal{L}_k(a) \implies \mathcal{B}[\mathcal{L}_k] := \sum_a a \mathcal{L}_k(a).$$

In general, the commutator of a homogeneous charge operator Q<sub>r</sub> with a boost B[L<sub>k</sub>] again yields a boost. However, boosts of the charges B[Q<sub>k</sub>]

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \, \mathcal{Q}_r(\lambda) = i \big[ \mathcal{B}[\mathcal{Q}_k(\lambda)], \mathcal{Q}_r(\lambda) \big],$$

yield again homogeneous operators  $Q_r(\lambda)$  as required. This is due to the fact that the charges  $Q_r$  commute:



#### Boost Commutator: Implementation 1/3

Boosts  $\mathcal{B}[\pi]$  on the  $\mathfrak{gl}(n)$  chain are represented in <code>Mathematica</code> as

**PermB**[ $\pi(1), \ldots, \pi(n)$ ], e.g. **PermB**[4,5,2,1,3].

Boosts of charges can be obtained by

```
B[r_] := Q[r] /. Perm -> PermB.
```

In order to compute deformed charges, need a Mathematica implementation of the commutator between boosts and permutation operators.

Overview of the commutator method in Mathematica:

```
CommutePermB[X_, Y_] :=
X /. {X1_PermB :> (Y /. Y1_Perm :> CommutePermB12[X1, Y1])}
CommutePermB12[X_PermB, Y_Perm] := Plus[
    CommutePermB12Hom[X /. PermB -> Perm, Y] /. Perm -> PermB,
    CommutePermB12Hom[X, Y] ]
CommutePermB12Hom[X_PermB, Y_Perm] := Sum[
    k (+CombinePerm12[X /. PermB -> Perm, Y, Length[X] + k]
        -CombinePerm12[Y, X /. PermB -> Perm, Length[Y] - k]),
    {k, 1, Length[Y] - 1}]
```

### Boost Commutator: Implementation 2/3

First, make the commutator distributive:

```
CommutePermB[X_, Y_] :=
X /. {X1_PermB :> (Y /. Y1_Perm :> CommutePermB12[X1, Y1])}
```

```
CommutePermB12[X_PermB, Y_Perm] := Plus[
CommutePerm[X /. PermB -> Perm, Y] /. Perm -> PermB,
CommutePermB12Hom[X, Y] ]
```

Then, each pair of boosted and unboosted permutation yields boosts (center line) and homogeneous terms (last line),

$$\begin{bmatrix} \mathcal{B}[\pi_1], \pi_2 \end{bmatrix} = \mathcal{B}\left[[\pi_1, \pi_2]\right] + \text{homogeneous}.$$

$$\begin{bmatrix} a \cdot \mathcal{L}_k \\ a \cdot \mathcal{L}_k \\ a \cdot \mathcal{L}_l \\ a \cdot \mathcal{$$

If  $\pi_1$  and  $\pi_2$  commute, the boost part (center line in the box above) vanishes.

## Boost Commutator: Implementation 3/3

The homogeneous part of the commutator is implemented as

```
CommutePermB12Hom[X_PermB, Y_Perm] := Sum[
    k (+CombinePerm12[X /. PermB -> Perm, Y, Length[X] + k]
        -CombinePerm12[Y, X /. PermB -> Perm, Length[Y] - k]),
    {k, 1, Length[Y] - 1}]
```

CommutePerm12[P1,P2,k] (cf. Florians talk) computes the product of two overlapping permutations P1 and P2, where the overlap is specified by k.

Example:

CommutePermB12Hom[PermB[2,1,3],Perm[3,2,4,1]]

$$= +1 \cdot \frac{\text{Perm}[2,1,3]}{\text{Perm}[3,2,4,1]} + 2 \cdot \frac{\text{Perm}[2,1,3]}{\text{Perm}[3,2,4,1]} + 3 \cdot \frac{\text{Perm}[2,1,3]}{\text{Perm}[3,2,4,1]} \\ -1 \cdot \frac{\text{Perm}[3,2,4,1]}{\text{Perm}[2,1,3]} - 2 \cdot \frac{\text{Perm}[3,2,4,1]}{\text{Perm}[2,1,3]} - 3 \cdot \frac{\text{Perm}[3,2,4,1]}{\text{Perm}[2,1,3]} \\ \mathbf{k} = 1 \qquad \mathbf{k} = 2 \qquad \mathbf{k} = 3$$

## **Boundary Identifications: Spectator Legs**

On an infinite or periodic chain, we can identify terms whose action differs only at chain boundaries. This is necessary for verifying whether deformed charges commute.

E.g. recall that for local operators:  $\[ \mathcal{L}_k = \mathcal{L}_k. \]$  (cf. talk by Florian) This implies for boosted operators



 $PermB[1, X_{-}] = PermB[X-1] - Perm[X-1]$ 

Method that implements the identification in Mathematica:

```
IdentifyBoundaryTermsBoostLeft[P_] := P //. {
    PermB[X__ /; First[{X}] == 1 && {X} != {1}] :>
    PermB @@ (Drop[{X}, 1] - 1) - Perm @@ (Drop[{X}, 1] - 1)
    }
```

### $\mathcal{X} = Bilocal Operators$

Another suitable type of deformation operators are bilocal operators:

$$\mathcal{L}_{k} = \sum_{a} \mathcal{L}_{k}(a), \quad \mathcal{L}_{l} = \sum_{a} \mathcal{L}_{l}(a) \implies [\mathcal{L}_{k}|\mathcal{L}_{l}] = \sum_{a \leq b} \frac{1}{2} \{\mathcal{L}_{k}(a), \mathcal{L}_{l}(b)\}.$$



### **Bilocal Commutator**

In general, the commutator of a local charge operator  $Q_r$  with a bilocal operator  $[\mathcal{L}_k | \mathcal{L}_l]$  again is bilocal. However, bilocal operators composed of the charges  $[Q_t | Q_u]$ 

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \, \mathcal{Q}_r(\lambda) = i \big[ [\mathcal{Q}_t(\lambda) | \mathcal{Q}_u(\lambda)], \mathcal{Q}_r(\lambda) \big],$$

yield again local operators  $Q_r(\lambda)$  as required.

Again, this is due to the fact that the charges  $Q_r$  commute:



### **Bilocal Commutator: Implementation**

Bilocal operators  $[\mathcal{L}_t | \mathcal{L}_u]$  are represented in Mathematica as

 $\texttt{Bi}[a_1\texttt{Perm}[\ldots] + \ldots + a_{l_t}\texttt{Perm}[\ldots], b_1\texttt{Perm}[\ldots] + \ldots + b_{l_u}\texttt{Perm}[\ldots]]$ 

Overview of the bilocal commutator method in Mathematica:

```
CommuteBiP[BI_, P_] := (BI // DistributeBi) /.
BI0_Bi :> (P /. P0_Perm -> CommuteBiP12[BI0, P0])
DistributeBi[B_] := B //. {
Bi[0, x___] -> 0,
Bi[x___, 0] -> 0,
Bi[x__, a_ y_] -> a Bi[x, y],
Bi[a_ x_, y__] -> a Bi[x, y],
Bi[-Perm[x__], Y__] -> -Bi[Perm[x], Y],
Bi[Y__, -Perm[x__]] -> -Bi[Y, Perm[x]],
B0_Bi :> Distribute[B0]
}
```

### **Bilocal Commutator: Implementation**

Bilocal operators  $[\mathcal{L}_t | \mathcal{L}_u]$  are represented in Mathematica as

```
\texttt{Bi}[a_1\texttt{Perm}[\ldots] + \ldots + a_{l_t}\texttt{Perm}[\ldots], b_1\texttt{Perm}[\ldots] + \ldots + b_{l_u}\texttt{Perm}[\ldots]]
```

Overview of the bilocal commutator method in Mathematica:

```
CommuteBiP[BI , P ] := (BI // DistributeBi) /.
 BIO_Bi :> (P /. PO_Perm -> CommuteBiP12[BIO, PO])
CommuteBiP12[BI Bi, P Perm] := Plus[
 Bi[CommutePerm12[BI[[1]], P] , BI[[2]]] // DistributeBi,
 Bi[ BI[[1]], CommutePerm12[BI[[2]], P] ] // DistributeBi,
 CommuteBiP12loc[BI, P]
 ]
CommuteBiP12loc[BI Bi, P Perm] := Module[
 {LBI1 = Length[BI[[1]]], LBI2 = Length[BI[[2]]], LP = Length[P]},
 Sum
   Module[{LongPerm = CombinePerm12[BI[[1]], BI[[2]], -d]},
      Sum[CombinePerm12[LongPerm, P, LBI1 + LBI2 + d + LP - s] -
          CombinePerm12[P, LongPerm, s],
        \{s, LBI1 + d + 1, LP + LBI1 - 1\}],
    \{d, 0, LP - 2\}]
```

### **Bilocal Commutator: Implementation**

Bilocal operators  $[\mathcal{L}_t | \mathcal{L}_u]$  are represented in Mathematica as

```
\texttt{Bi}[a_1\texttt{Perm}[\ldots] + \ldots + a_{l_t}\texttt{Perm}[\ldots], b_1\texttt{Perm}[\ldots] + \ldots + b_{l_u}\texttt{Perm}[\ldots]]
```

Overview of the bilocal commutator method in Mathematica:

```
CommuteBiP12loc[BI_Bi, P_Perm] := Module[
    {LBI1 = Length[BI[[1]]], LBI2 = Length[BI[[2]]], LP = Length[P]},
    Sum[
      Module[{LongPerm = CombinePerm12[BI[[1]], BI[[2]], -d]},
      Sum[CombinePerm12[LongPerm, P, LBI1 + LBI2 + d + LP - s] -
            CombinePerm12[P, LongPerm, s],
            {s, LBI1 + d + 1, LP + LBI1 - 1}]],
            {d, 0, LP - 2}]]
```



## **Generating Integrable Charges**

We have found two types of operators that generate deformations of integrable charges

- ▶ Boost operators B[Q<sub>k</sub>],
- Bilocal operators  $[\mathcal{Q}_t | \mathcal{Q}_u]$ .

The charges  $Q_r$  can be deformed independently by each operator:

$$\mathcal{Q}_r = \mathcal{Q}_r(\alpha_3, \alpha_5, \dots; \beta_{2,3}, \beta_{2,4}, \dots, \beta_{3,4}, \beta_{3,5}, \dots),$$
  
$$\frac{\mathrm{d}}{\mathrm{d}\alpha_k} \mathcal{Q}_r = i \Big[ \mathcal{B}[\mathcal{Q}_k], \mathcal{Q}_r \Big], \qquad \frac{\mathrm{d}}{\mathrm{d}\beta_{t,u}} \mathcal{Q}_r = i \Big[ [\mathcal{Q}_t | \mathcal{Q}_u], \mathcal{Q}_r \Big].$$

- The set of deformations exhausts all non-trivial degrees of freedom previously obtained by brute force.
- Specific one-dimensional deformations Q<sub>r</sub>(λ) can be chosen by suitably defining functions α<sub>k</sub>(λ), β<sub>t,u</sub>(λ).
- For the gl(n) chain, a there exists a choice α<sub>k</sub>(λ), β<sub>t,u</sub>(λ) that reproduces the dilatation generator (anomalous dimensions) for the su(2) subsector of N = 4 SYM.

## **Bethe Equations**

The Bethe equations for a general symmetry group  $\mathfrak{g}$  of rank R for a chain of length L are given by

$$\left(\frac{u_{a,k} + \frac{i}{2}t}{u_{a,k} - \frac{i}{2}t}\right)^{L} = \prod_{\substack{b=1 \ j=1}}^{R} \prod_{\substack{j=1 \ (b,j) \neq (a,k)}}^{M_{b}} \frac{u_{a,k} - u_{b,j} - \frac{i}{2}C_{a,b}}{u_{a,k} - u_{b,j} + \frac{i}{2}C_{a,b}}.$$

where

- $u_{a,k}$  is the rapidity of the k'th particle of type a and
- $S_{a,b}$  is the two-particle scattering matrix for particles of type a, b.

### **Bethe Equations**

The Bethe equations for a general symmetry group  $\mathfrak{g}$  of rank R for a chain of length L are given by

$$\begin{pmatrix} \frac{u_{a,k} + \frac{i}{2}t}{u_{a,k} - \frac{i}{2}t} \end{pmatrix}^{L} = \prod_{b=1}^{R} \prod_{j=1}^{M_{b}} \frac{u_{a,k} - u_{b,j} - \frac{i}{2}C_{a,b}}{u_{a,k} - u_{b,j} + \frac{i}{2}C_{a,b}} \,.$$

$$\begin{pmatrix} \text{boost def.} \\ \begin{pmatrix} \frac{x(u + \frac{i}{2}t)}{x(u - \frac{i}{2}t)} \end{pmatrix}^{L} \end{pmatrix}$$

where

- $u_{a,k}$  is the rapidity of the k'th particle of type a and
- $S_{a,b}$  is the two-particle scattering matrix for particles of type a, b.

The boost deformation parameters  $\alpha_k$  enter the rapidity map x(u),

$$u = x + \sum_{k=3}^{\infty} \frac{\alpha_k}{x^{k-2}} \,,$$

## **Bethe Equations**

The Bethe equations for a general symmetry group  $\mathfrak{g}$  of rank R for a chain of length L are given by

where

▶  $u_{a,k}$  is the rapidity of the k'th particle of type a and

•  $S_{a,b}$  is the two-particle scattering matrix for particles of type a, b. The boost deformation parameters  $\alpha_k$  enter the rapidity map x(u),

$$u = x + \sum_{k=3}^{\infty} \frac{\alpha_k}{x^{k-2}} \,,$$

while the bilocal deformations  $\beta_{t,u}$  give rise to the *dressing phase*,

$$\theta = \sum_{u>t=2}^{\infty} \beta_{t,u} \left( q_t(u) q_u(u') - q_u(u) q_t(u') \right).$$

## Generating Integrable $\mathfrak{gl}(n)$ Charges: Example

Deform the charges with the boost operator  $\mathcal{B}[\mathcal{Q}_3]$ , i.e.

$$\frac{\mathrm{d}}{\mathrm{d}\alpha_3}\,\mathcal{Q}_r = i\big[\mathcal{B}[\mathcal{Q}_3],\mathcal{Q}_r\big],$$

To first order in  $\alpha_3$ , the charges expand to

$$\begin{aligned} \mathcal{Q}_{r} &= \mathcal{Q}_{r}^{(0)} + \alpha_{3} \mathcal{Q}_{r}^{(3)} + \mathcal{O}(\alpha_{3}^{2}) \\ &= \mathcal{Q}_{r}^{(0)} + \alpha_{3} i \big[ \mathcal{B}[\mathcal{Q}_{3}^{(0)}], \mathcal{Q}_{r}^{(0)} \big] + \mathcal{O}(\alpha_{3}^{2}) \,. \end{aligned}$$

As a starting point, take the known short-range charges  $\mathcal{Q}_r^{(0)}$ .

Q[2, 0] = Perm[1] - Perm[2, 1], Q[3, 0] = - 1/2 I (Perm[2, 3, 1] - Perm[3, 1, 2]),....

The first perturbative order  $\mathcal{Q}_r^{(3)}$  of the first two charges read

In[43]:= Q[2, 3] = I CommutePermB[B[3, 0], Q[2, 0]] // IdentifyBoundaryTerms
Out[43]= - Perm[1] + Perm[2, 1] - 1/2 Perm[2, 3, 4, 1] + 1/2 Perm[2, 4, 1, 3]
+ 1/2 Perm[3, 1, 4, 2] - 1/2 Perm[4, 1, 2, 3]
In[44]:= Q[3, 3] = I CommutePermB[B[3, 0], Q[3, 0]] // IdentifyBoundaryTerms
Out[44]= 1/4 I Perm[2, 4, 3, 1] + 1/4 I Perm[3, 2, 4, 1] - 1/4 I Perm[4, 1, 3, 2]
- 1/4 I Perm[4, 2, 1, 3] - 1/2 I Perm[2, 3, 4, 5, 1] + 1/2 I Perm[2, 3, 5, 1, 4]
+ 1/2 I Perm[3, 1, 5, 2, 4] - 1/2 I Perm[2, 1, 2, 5, 3] + 1/2 I Perm[3, 1, 4, 5, 2]
- 1/2 I Perm[3, 1, 5, 2, 4] - 1/2 I Perm[4, 1, 2, 5, 3] + 1/2 I Perm[5, 1, 2, 3, 4]

## Generating Integrable $\mathfrak{gl}(n)$ Charges: Example

Deform the charges with the boost operator  $\mathcal{B}[\mathcal{Q}_3]$ , i.e.

$$rac{\mathrm{d}}{\mathrm{d}lpha_3}\,\mathcal{Q}_r=iig[\mathcal{Q}_3],\mathcal{Q}_rig],$$

To first order in  $\alpha_3$ , the charges expand to

$$\begin{aligned} \mathcal{Q}_{r} &= \mathcal{Q}_{r}^{(0)} + \alpha_{3} \mathcal{Q}_{r}^{(3)} + \mathcal{O}(\alpha_{3}^{2}) \\ &= \mathcal{Q}_{r}^{(0)} + \alpha_{3} i \big[ \mathcal{B}[\mathcal{Q}_{3}^{(0)}], \mathcal{Q}_{r}^{(0)} \big] + \mathcal{O}(\alpha_{3}^{2}) \,. \end{aligned}$$

As a starting point, take the known short-range charges  $Q_r^{(0)}$ . The first perturbative order  $Q_r^{(3)}$  of the first two charges read

```
In[43]:= Q[2, 3] = I CommutePermB[B[3, 0], Q[2, 0]] // IdentifyBoundaryTerms
Out[43]= - Perm[1] + Perm[2, 1] - 1/2 Perm[2, 3, 4, 1] + 1/2 Perm[2, 4, 1, 3]
+ 1/2 Perm[3, 1, 4, 2] - 1/2 Perm[4, 1, 2, 3]
In[44]:= Q[3, 3] = I CommutePermB[B[3, 0], Q[3, 0]] // IdentifyBoundaryTerms
Out[44]= 1/4 I Perm[2, 4, 3, 1] + 1/4 I Perm[3, 2, 4, 1] - 1/4 I Perm[4, 1, 3, 2]
- 1/4 I Perm[4, 2, 1, 3] - 1/2 I Perm[2, 3, 4, 5, 1] + 1/2 I Perm[2, 3, 5, 1, 4]
+ 1/2 I Perm[2, 4, 1, 5, 3] - 1/2 I Perm[4, 1, 2, 5, 3] + 1/2 I Perm[3, 1, 4, 5, 2]
- 1/2 I Perm[5, 1, 2, 3, 4]
```

We can verify that the deformed charges indeed commute:

```
In[45] := CommutePerm[Q[2, 3], Q[3, 0]] + CommutePerm[Q[2, 0], Q[3, 3]]
Out[45] = 0
```

# Summary

- Perturbative long-range integrable spin chains can be obtained as deformations of short-range models via a generating equation.
- Suitable deformation operators are given by boosts  $\mathcal{B}[\mathcal{Q}_k]$  and bilocal operators  $[\mathcal{Q}_t|\mathcal{Q}_u]$  constructed from the integrable charges  $\mathcal{Q}_r$ .
- The deformation reproduces all degrees of freedom that were obtained before by brute force.
- The deformations give rise to the rapidity map x(u) (boosts) and the dressing phase θ (bilocal operators).

For generic symmetry algebra  $\mathfrak{g}$ , *all charges* are defined to *all orders* (on an infinite chain) and are integrable by construction.