Recent Slice Energy Spread Measurements in the EuXFEL

Injector

Stuart Walker, Sergey Tomin, Igor Zagorodnov, Nina Golubeva, Matthias Scholz, Winfried Decking, Bolko Beutner, Erion Gjonaj Hamburg, 26/09/2023

Overview

Subheading, optional

1 Motivation

2 Introduction

3 History

4 Method

5 Tooling

6 New Measurements with Results

7 Experiment Details

8 Conclusion

Motivation

- Uncorrelated (slice) energy spread is an important property in FELs, where high brightness is required.
- However, usually energy spread from injector is too low and must be increased using the laser heater (LH) to increase SASE performance due to the microbunching instability.
- Ideally increased to 8 keV based on simulations from Martin, but actual optimal value unknown.
- Regardless, understanding uncorrelated energy spread is necessary to improve machine reproducibility and understanding.
- Dynamics not understood, unable to recreate measured slice energy spread spread values with ASTRA simulation.

Context

- Fermi, 2020: Intrabeam scattering measured, but result highly dependent on initial energy spread, which was treated as a free parameter.
- SwissFEL, 2020: energy spread measurement in the injector using an energy scan—15keV @ 200pC \& $>100 \mathrm{MeV}$.
- EuXFEL, 2021: Similar approaching involving a dispersion scan—6keV @ 250pC \& 130MeV. PITZ 2022 — 2 keV @ 250pC \& 20MeV. 10.1103/PhysRevAccelBeams.25.083401
- SwissFEL, 2022: Contribution of the microbunching instability and intra-beam scattering evidenced by varying the optics -> reduced by adjusting optics and disabling LH chicane. 10.1103/PhysRevAccelBeams.25.104401
- EuXFEL, 2022, 2023: Now measured 4 keV , reduced to $\sim 3.4 \mathrm{keV}$ with some manipulation of the solenoid current. Unpublished.
- The energy spread has stayed stable since then, at about $\sim 4 \mathrm{keV}$.

Scenario	$\sigma_{E} / \mathrm{keV}$	Solenoid / A	Gun Gradient	Gun Phase
Feb. 2021 Published Result	5.842 ± 0.003	338	56.7	-42.9
Nov. 2022 Measurement 1	4.313 ± 0.004	326.6	54.7	-43.1
Nov. 2022 Measurement 2	3.635 ± 0.004	336	56.5	-43.6
Nov. 2022 Measurement 3	3.385 ± 0.004	335	56.5	-41.6

The Usual Approach

Only provides an upper limit on uncorrelated spread σ_{E}.

Neglected contributions to size:

- Betatronic
- TDS-induced energy spread
- Imaging resolution

In the injector these contributions can be larger than the slice energy spread's contribution!

Need to separate these effects...

Separating the contributions to the slice size

Assuming no correlation between TDS-induced energy spread and "true" energy spread, the final slice

$$
\sigma_{M}^{2}=\sigma_{R}^{2}+\sigma_{B}^{2}+\frac{D^{2}}{E^{2}} \sigma_{E}^{2}+\frac{D^{2}}{E^{2}}(e k V)^{2} \sigma_{I}^{2}
$$ energy spread seen at the screen:

$$
\begin{aligned}
\sigma_{E_{\mathrm{final}}}^{2}=\sigma_{E}^{2}+ & (e k V)^{2} \sigma_{I}^{2} \\
& \text { Beamsize in the TDS }
\end{aligned}
$$

$$
\sigma_{B}^{2}=\frac{\beta_{x} \varepsilon_{n}}{\gamma_{0}} \quad \sigma_{I}^{2}=\frac{\varepsilon_{n}}{\gamma_{0}}\left(\beta_{y}^{0}+0.25 L^{2} \gamma_{y}^{0}-L c\right.
$$

Measurement Technique

Derived Values

For the two scans:

$$
\sigma_{E}=\frac{E_{0}}{D_{0}} \sqrt{A_{V}-A_{D}}
$$

$\sigma_{M}^{2}=\sigma_{R}^{2}+\sigma_{B}^{2}+\frac{D^{2}}{E^{2}} \sigma_{E}^{2}+\frac{D^{2}}{E^{2}}(e k V)^{2} \sigma_{I}^{2}$

$$
\sigma_{I}=\frac{E_{0}}{D_{0} e k} \sqrt{B_{V}}
$$

$$
\begin{aligned}
\sigma_{M}^{2} & =A_{V}+B_{V} V^{2} \\
\sigma_{M}^{2} & =A_{D}+B_{D} D^{2}
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{B} & =\sqrt{B_{\beta} \beta_{x}^{0}} \\
B_{\beta} & =\sigma_{I}^{2}\left(\beta_{y}^{0}+0\right. \\
\sigma_{R} & =\sqrt{A_{D}-\sigma_{B}^{2}}
\end{aligned}
$$

$$
B_{\beta}=\sigma_{I}^{2}\left(\beta_{y}^{0}+0.25 L^{2} \gamma_{y}^{0}-L \alpha_{y}^{0}\right)
$$

Injector Setup

- Calibrate the gun phase.
- Turn off AH1 for minimum chirp contribution to energy spread.
- Go on crest in A1, adjust the voltage so we are at 130 MeV at the screen.
- Apply special optics to maximise the ratio of the dispersion to the betatron contributions to the spot size.
- Match the central slice using Matthias tool (vital for this measurement)
- Measure the dispersion.
- Turn the laser heater off.

Special optics for measurement from TDS to the screen

Procedure

TDS No. $=13, \eta_{x}=1.181 \mathrm{~m}$, image 1 , before/after image processing

Take 5 background images at the start of the measurement, and then 30 images:

1. At each TDS V in the voltage scan.
2. At each D_{x} at the screen in dispersion scan.
3. At each β_{x} at the screen in the beta scan.

Then:

1. Subtract background.
2. Mask to remove isolated blobs.
3. Pick the largest connected non-zero pixel blob to be "the beam".
4. Fit a Gaussian to 10 slices centred on

 highest energy slice \& average.

New Tooling

Measurement

- Taking ~ 400 images across ~ 15 machine setpoints without special tooling would take about an hour. Then, offline analysis takes another 10 minutes.
- To this end we have developed a GUI to do the parameter scanning.
- Live image processing panel.
- Live slice width scan plots (e.g. TDS voltage against central slice width).
- Immediate results at the end of the scan.
- Bottom line: results in a few minutes.

New Tooling

TDS Calibration

- Additionally the TDS needs to be calibrated for each measurement campaign to get the voltage \rightarrow also takes up to an hour.
- Also developed an injector TDS calibration GUI
- Automatically scan TDS "amplitudes" and phases to build mapping of amplitudes [\%] to voltages [MV] \rightarrow Gives all downstream longitudinal calibrations!
- Also useful for non-invasive emittance and bunch length measurements.
- Bottom lline: calibrate the injector TDS in a few minutes with no human intervention.

B2 calibrator development ongoing. Non-invasive development ongoing.

Extracted zero-crossing gradients at each amplitude

Experiment details

- We did two scans over a single four hour shift.
- Charge scan: $50 \mathrm{pC}, 150 \mathrm{pC}, 250 \mathrm{pC}$ and 350 pC
- R_{56} scan: $-1 \mathrm{~mm},-2.5 \mathrm{~mm},-4.336 \mathrm{~mm}$ (nominal), -5.5 mm and -7 mm .
- We rematched the projected emittance every single time,
- then measured the central slice emittances (showing good matching already).
- We additionally scanned the beta function at the screen (not shown here).
- We used the new online data data taking and analysis software for these scans, as well as for calibrating the TDS.

Charge Scan

- We scanned from 50 pC to 350 pC in steps of 100 pC .
- Unable to resolve the TDS contribution to the energy spread at 50 pC , so assumed to be zero.
- No obvious reason to consider energy spread from TDS to be zero, related to the camera sensitivity?

R_{56} Scan

- We scanned the R_{56} of the laser heater chicane from • Design setting (-4.336 mm) not scanned in order -7 mm to -1 mm (the minimum). with the other setpoints.
- We rematched the beam each time, first projected, - Strong dependence on LH R_{56} is apparent, from then the central slice. 4.5 keV at maximum to 2.4 keV at minimum.

Measurement Details

Possible Dispersion Leakage from the LH Chicane

- We did not remeasure the dispersion at each setpoint of the laser heater $\mathrm{R}_{56} \mathrm{scan}$.
- Possible: we have some leaked dispersion from the chicane at the screen.
- First two dipoles have same power supplies, second two are each independent.
- Consider: Identical 15\% error in first two dipoles and independent 15\% errors in second pair, perhaps some sort of "worst case".
- Simulated in OCELOT.
- Dispersion at the screen is tolerant to even large changes in the LH dipoles.
- Nevertheless should measure the dispersion in future experiments.
- Translates max $\pm 10 \%$ error in energy spread.

Emittance Measurements

- Matthias matching/measurement tool is vital to our measurement.
- We match projected and then measure slice—and normally this gives reasonable matching, but we extract much smaller emittances from our scans.
- We see measured central slice emittances that are larger than the corresponding projected emittances even with apparently "good" matching.
- Is there any way we can reduce the error bars here?

ref

Constant Contributions to Measured Widths

- In principle both are known:
- Screen resolution $\left(\sigma_{R}\right)$ from dedicated optics simulations (Artem)

$$
A_{D}=\sigma_{R}^{2}+\sigma_{B}^{2}
$$

- Betatron contribution $\left(\sigma_{B}\right)$ from slice emittance measurement and linear optics (Matthias)
- $\sigma_{R}=28 \mu \mathrm{~m}$ (from Artem and previous scans); $\beta_{x}=0.6 \mathrm{~m}$ and $\varepsilon_{x}=0.43 \mathrm{~mm} \cdot \mathrm{mrad}$ (Matthias matching tool)
- Constant terms remain constant across the scan, but $\sim 7 \%$ larger than expected (from Matthias+Artem).

The Matthias Tool

Deriving the emittance assuming the screen resolution

- Fitting A_{D} and using a pre-calculated value of σ_{R}, we can extract a value for the slice emittance.
- We independently measure, using Matthias' matching tool, $(0.43 \pm 0.05) \mathrm{mm} \cdot \mathrm{mrad}$ for the slice emittance.

$$
\varepsilon_{n}=\frac{\gamma_{0}}{\beta_{x}}\left(A_{D}-\sigma_{R}^{2}\right)
$$

- Not entirely in disagreement with our derived value.
- Can we reduce the uncertainties in the emittance measurement?

Conclusion

- The slice energy spread shows wide tunability based on the charge and laser heater chicane R_{56}.
- (2.4-4.5) keV from -1mm to -7mm R_{56} @ 250 pC
- (3.0-4.5) keV from 50pC to 350pC @ nominal R_{56}.
- In combination with the longer term decrease from $\sim 6 \mathrm{keV}$ to 4 keV in the last two years for unknown reasons, it is clear that there is still a lot to be understood about the LPS dynamics in the injector.
- Important to understand to boost reproducibility.
- The charge scan points at possible IBS contributions to the slice energy spread.
- The R_{56} dependence needs more understanding and explanation. MBI?
- We now have a fast and easy to use data taking and online analysis tool which gives fast results. Room for further studies of other parameters, e.g. bunch length.

Outlook

- Upcoming blue week in October for additional chicane studies.
- Aiming to take part in the upcoming Nepal laser commissioning--bunch length scans (not possible with laser 2).
- We would still like to provide an absolute calibration of the laser heater.
- IBS simulation work ongoing with Erion to ground these results more in theory.
- Further work on the GUI and tooling to improve usability and speed.
- Broader GUI development will feed back into parasitic bunch length and slice emittance measurements for use in normal operation.

Final Slide

- Thanks also to:
- Frank (beam energy coming out of the gun measurement)
- Torsten (useful and interesting conversations regarding laser heater)
- Weilun (night shift moral support)
- Questions?

Thank you

Contact

```
Deutsches Elektronen-
Synchrotron DESY
www.desy.de
```

Stuart Walker
MXL
stuart.walker@desy.de
4756

