Current status of the optimization of the SRF photo injector for the CW XFEL

Dmitry Bazyl MPY 17.11.20

Content

- Motivation and goals
- CW XFEL
- L-band SRF gun
- Superconducting solenoid
- CW XFEL injector
- Optimization algorithm
- Injector optimization
- Discussion and outlook

Motivation and goals

- Evaluate the performance of the DESY SRF CW L-band gun
- Optimization of the CW injector for two objective functions: transverse emittance and longitudinal size of the beam
- Evaluate initial working points for the CW injector
- Evaluate optimal solenoid position
- Generate various bunch profiles for further s2e simulations (Ye Chen, Martin Dohlus)
- Further optimization
- ...and more

CW XFEL

- L-band 1.3 GHz SRF gun
- SC solenoid
- Continuous wave operation:
 - Accelerating gradient of 16 MV/m in the injector
 - 7-8 MV/m in the L3
 - L3 will be extended by 12 CMs to 96 total
- For the long pulse operation the gradient in the L3 can be increased to 12 MV/m

Prospects for CW and LP operation of the European XFEL in hard X-ray regime, R. Brinkmann, E. A. Schneidmiller, J. Sekutowicz, M. V. Yurkov

DESY L-band SRF gun

- 1.6-cell TESLA cavity
- Operating frequency 1.3 GHz
- Current gun version 10
- Experimentally demonstrated possibility of achieving peak field of 60 MV/m; 40 MV/m – repetitively
- G09;10 are being prepared for manufacturing

RF shape of the gun n.10:

DESY L-band SRF gun

Limit of the accelerating gradient

- Empirical limit for Nb cavity:
 - Magnetic field on the surface of 200 mT thermal breakdown

Electric field on axis [MV/m]	40	50	60
Magnetic field on the surface [mT]	99.2	123	147

- Quality of the inside surface of the SRF cavity defines its performance
- Small defects and imperfections of the inside surface of the SRF cavities can be present

- In 1980s the limit was 3 MV/m multipacting (technological limitation)
- Many labs are working on various techniques related to surface treatment in order to increase the gradient while maintaining high Q-factor (e.g. A. Grassellino, FNAL)

*) D. Bazyl, SRF cavity surface inspection methods, summer student report at DESY - 2014

Gun gradient

Cathode choice

Metallic cathode (e.g. Pb)

- + Robust
- + Superconducting
- + Long life time
- Low QE
- Potentially increased thermal emittance
- High work function (UV light)

DESY SRF GUN:

Semi-conductor cathodes (e.g. CsK2Sb)

- + High QE
- + Life time up to two months demonstrated
- + Lower thermal emittance
- Potential deposit of cathode material to the cavity
- Complicated insertion
- Sensitive to vacuum quality

KEK (Japan) SRF GUN*:

*) T. Konomi et., al. *DEVELOPMENT OF HIGH INTENSITY, HIGH BRIGHTNESS, CW SRF GUN WITH Bi-ALKALI PHOTOCATHODE* **DESY.** | Current status of the optimization of the SRF photo injector for the CW XFEL | Dr.-Ing. Dmitry Bazyl, 17.11.20

Thermal emittance of the Pb cathode

TABLE I: Available data of lead photocathodes and estimations.					
	$\hbar\omega$	Φ	QE	σ_x	$\epsilon_n{}^a$
	eV	eV	-	mm	μ m
193 nm ^b	6.42	3.88	5.41E-3	0.25	0.322
213 nm ^c	5.82	3.88	2.72E-3	0.25	0.281
258 \mathbf{nm}^d	4.81	4.45	0.90E-4	0.25	0.121
258 nm ^e	4.81	4.37	0.95E-4	0.25	0.134

Thermal emittance:

$$\varepsilon_{x,y} = \sigma_{x,y} \sqrt{\frac{E_{phot} - \phi_{eff}}{3m_0 c^2}}$$

^bBNL, tests on samples, no typical cavity treatments, 1 MV/m.

^cBNL, tests on samples, no typical cavity treatments, 1 MV/m.

^dHZB, realistic SRF cavity environment, no Schottky.

^eHZB, realistic SRF cavity environment, a Schottky reduction of 0.08 eV for ~4.8 MV/m.

[1] David H. Dowell and John F. Schmerge, Phys. Rev. Accel. Beams 12, 074201 (2009).

[2] J. Smedley, T. Rao, J. Sekutowicz, Phys. Rev. Accel. Beams 11, 013502 (2008).

[3] R. Barday, A. Burrill, A. Jankowiak et al., Phys. Rev. Accel. Beams 16, 123402 (2013).

*) A note on intrinsic emittance for lead photocathodes by Ye Chen on 7.9.2020

Importance of thermal emittance (i.e. quality of the cathode)

Thermal emittance:

L-band SRF gun test stand at DESY

EM field calculation

- CST MWS for field calculation
- No coupler
- Mesh noise close to the cathode can affect beam dynamics simulation

Refined mesh in the volume which covers the trajectory of the beam

Electric field distribution on axis:

EM field calculation

- 1.6 cell cavity
- 1.3 GHz
- TM₀₁₀; pi-mode
- Peak field on axis 40 MV/m

H-field:

Laser profile

Longitudinal profile:

- Gaussian
- Flat top
- Ellipsoid

Transverse profile:

- Radial uniform
- Truncated Gaussian

Charge:

- 100 pC
- 50; 75 pC?

Uncertainties:

- Maximal laser pulse length (micro bunching and other issues)
- Thermal emittance

Superconducting focusing solenoid

- Data concerning the solenoid received from HZB
- Fields are calculated in POISSON (based on the input from NIOWAVE)
- In operation at gun test stand at HZB
- Compare to other options in future

Distribution of the magnetic field on axis:

Page 15

Courtesy HZB

CW XFEL injector

Injector setup for the optimization

- SRF gun #10 (RF shape of the gun #7)
- NIOWAVE solenoid
- Eight SRF 9-cell TESLA cavities

CW XFEL injector

Parameters for optimization

Laser profile:

- Longitudinal laser shape Gaussian
- Transverse laser shape radial uniform
- Transverse size sig_x/sig_y
- Pulse duration sig_z

Cathode:

- Pb
- Initial thermal kinetic energy of 0.22
- Charge 100 pC

CW XFEL injector

Objective functions and parameters for optimization

Present:

- In this framework:
 - objective functions: rms bunch length and rms projected emittance
- Five parameters to optimize
- Amplitudes of the first and the second module are set to 32 MV/m
- No phase offset in the first and the second module – they are used further on for compression purposes in s2e simulations

Further on:

Include peak field in the first module

rms laser spot size	sig_x / sig_y		
rms pulse duration	sig_z		
Gun phase offset from MMGA value	${f \phi}_1$		
Solenoid field	Bz		
Position of the first accelerating module	C_pos		
Peak field in the first module	E1		
Phase offset in the first module	φ ₂		
Phase offset in the second module	Фз		

Optimization algorithm

Multi-objective genetic optimizer

- C++ code written in LBNL; provided by H. Qian (PITZ)
- NSGA-2: Nondominated Sorting Genetic Algorithm
- Code drives ASTRA on cluster
- Population size = number of active CPUs
- Optimization run takes up to 24 hours using reasonable computational recourses (2 nodes x 40 CPUs)
- Run time can be reduced by increasing population size (i.e. number of CPUs)
- Difficulty: the code has been written for LBNL cluster infrastructure; suitable C++ libraries for compilations were unknown

- In this framewrok:
 - f1 rms bunch length
 - f2 rms projected emittance
- Solution C is not in the Pareto front because it is dominated by A and B
- Solutions A and B do not dominate each other

Solenoid position

Solenoid position

Same results from previous slide but zoomed in:

- Geometric constrains in the cryostat will be present
- Positioning of the solenoid closer to the cathode yields better results (with some inconsistency)
- Similar results can be achieved within +- 0.4 meters from the optimal position
- 0.41 [m] seems to be favorable position (to be checked with geometric constrains)

Transverse emittance, beam size

Case A – larger emittance, smaller bunch length; bunch at 15 m

Case B – smaller emittance, larger bunch length; bunch at 15 m

DESY. | Current status of the optimization of the SRF photo injector for the CW XFEL | Dr.-Ing. Dmitry Bazyl, 17.11.20

20

20

Case C – largest emittance, smallest bunch length; bunch at 14 m

Summary

- Laser profile Gaussian
- Initial thermal kinetic energy 0.22 eV
- Charge 100 pC

Paremeter	CASE A	CASE B	CASE C
thermal emittance [pi mm mrad]	0.16	0.14	0.17
rms laser spot size [mm]	0.29	0.26	0.31
rms laser pulse lenght [ps]	7.3	8.7	5.6
transverse. proj. emitt. at 15 m [pi mm mrad]	0.345/0.344	0.320/0.320	0.384/0.384
rms bunch length at 15 m [mm]	1.801	2.132	1.525

- These cases are being analyzed by Y. Chen and M. Dohlus (OCELOT, IMPACT-Z)
- We need to better understand the upper limit of the laser pulse length

Longitudinal flat top and transverse truncated Gaussian (1σ) laser profile at 50 MV/m

Coming up next...

For the DESY SRF gun (Pb cathode):

- Consider 50 MV/m and 60 MV/m
- Consider bunch charge of < 100 pC
- Continue optimization with longitudinal FT and transverse truncated Gaussian laser profiles
- Results must be obtained for various thermal emittance values
- Take into account longer pulse (with relatively long laser pulse length -> lower slice emittance)
- Consider different solenoid field

For the SRF cavity, which can host green cathodes:

- Selectively repeat optimization for particularly interesting scenarios
- Compare the results

Conclusion

- C++ optimization code runs without problems on DESY Maxwell cluster
- In general, allocating solenoid closer to the cathode yields better results
- The SRF gun gradient is the key for achieving low emittance
- Thermal emittance defines the final emittance
- Longitudinal flat top laser yields better results in comparison to Gaussian

Acknowledgments

• I. Zagorodnov, Y. Chen, H. Qian, X. Li and the colleagues who are involved from the DESY beam-dynamics group

Thank you

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Dmitry Bazyl MPY dmitry.bazyl@desy.de Ext. -2807