intermediate summary of uB simulations for XFEL
proposed optics: case 1 (standard), case 2 (increased beta), case 3 (case 2, LH chicane off)
effects: effective (one dimensional) SC impedance (per length) for beams with elliptical cross-section, no CSR
method: periodic three dimensional particle distribution in linear particle transport real shot noise (macro particle = particle!)
beam parameters and setup: close to 250 pC standard case, calculation to BC1 exit
quantities of interest: rms current fluctuation, rms energy spread
scan vs initial energy spread
fluctuation and spread vs. linac coordinate (multiple seeds), noise spectrum
effect of dogleg and emittance
effect of BCO (r56), different compression setup
earlier investigations: uB in XFEL, (periodic linear, three dimensional SC) https://www.desy.de/xfel-beam/s2e/talks/2019_11_05/martin.pdf
in preparation: full bunch simulation on cluster (10x more particles, non-lin. transport)
case 1 und case 2

effects: effective SC impedance (per length) for beams with elliptical cross-section

case 1,2 and 3 with 20 A , emit $=0.5$ and $B C O=$ nominal compression= $3.5 / 28 / 250$
periodic simulation with $10^{\wedge} 8$ electrons the initial period length is

$$
L_{p}=\frac{10^{8} q_{0}}{20 \mathrm{~A}} v=0.24 \mathrm{~mm}
$$

bandwidth: $\lambda_{\min }=\frac{L_{p}}{500}$
impedance weight from 1 to 0 between 0.8 and 0.9 of $\lambda_{\text {min }}$
calculation to BC1 exit
it does not make sense to compress further: either the period length gets too short or the number of electrons too large
beam parameters and compression setup:

scan vs initial energy spread

scan vs initial energy spread

fluctuation and spread vs linac coordinate (10 random seeds)

noise spectrum

horizontal and vertical beta function

horizontal and vertical beta function

horizontal and vertical beta function

noise integral, current $=69.7723 \mathrm{~A}$

relative power spectrum, $Z=84.75 \mathrm{~m}$

unłวəəds fo łno

effect of DOGLEG

effect of emittance
case 1,2 and 3 with 20A, emit=0.7 and BCO=nominal compression= $3.5 / 28 / 250$
rms spread of current, case $=1, \sigma_{\mathrm{E}}=5000$

rms spread of uncorrelated energy

rms spread of current, case $=2, \sigma_{\mathrm{E}}=5000$
emittance $=0.5 / 0.7$ blue/red

rms spread of uncorrelated energy

rms spread of current, case $=2, \sigma_{\mathrm{E}}=5000$

rms spread of uncorrelated energy

rms spread of current, case $=3, \sigma_{\mathrm{E}}=5000$
emittance $=0.5 / 0.7$ blue/red

effect of BCO (r56)
$B C 0$ (r56) $=$ nominal/min/max
case 1 with 20A, emit=0.5, sigma_E=5000
nom: compression=3.5 / $28 / 250$
min: linac_phases=0..2: [16.874 180-10 24.307-29.71 0]/180*pi
3: [18.447 180-10 23.038-29.6893 0]/180*pi;
3.5/28/250
max: linac_phases=0..2 [7.6456 180-10 30.0-21.85 0]/180*pi
3: [8.0376 180-10 30.0-24.101 0]/180*pi
3.69/28/250

different compression $(2.5 \times 10 \times 10)$ for $1 \times$ random

different compression $2.5 \times 10 \times 10, \mathrm{BCO}$ max, some matching
rms spread of current, case=1, $\sigma_{\mathrm{E}}=2000$, loop5

rms spread of uncorrelated energy

rms spread of current, case $=1, \sigma_{E}=5000$, loop5

1 mrad bend after LH
beamline: Gun to LH beamline: to DOGLEG, BCO, L1, ...
bend
$\mathrm{C}=3.5 / 28 / \ldots$ approximately; V bend after LH chicane rms spread of current, case=2, $\sigma_{\mathrm{E}}=\mathbf{2 0 0 0}$, VBEND 0.001

rms spread of current, case=2, $\sigma_{\mathrm{E}}=5000$, VBEND 0.001

$\mathrm{C}=3.5 / 28 / \ldots$ approximately; H bend after LH chicane rms spread of current, case $=2, \sigma_{\mathrm{E}}=2000$, HBEND 0.001

rms spread of current, case=2, $\sigma_{\mathrm{E}}=\mathbf{5 0 0 0}$, HBEND 0.001

