Start-to-end and CSR Simulation of Bunch Compressor for the PITZ THz SASE FEL Experiment

Anusorn Lueangaramwong from group PITZ Meeting at DESY in Hamburg 10.03.2020

Plan of Proof-of-Principle Experiments for THz FEL at PITZ

The proposed extension for the proof-of-principle experiments for THz FEL at PITZ

 Tunnel annex
 Main tunnel

 A LCLS-I undulator
 e beam

 A chicane bunch compressor (d HERA corrector dipoles)
 Arr

- High peak current and long bunch beams for high-gain FELs (SASE and seeding)
- Ultra-short bunch beams for coherent THz radiation (undulator, transition and diffraction)
- A bunch compressor (BC) is needed for beam manipulations

Estimations of FEL parameter space:

Bunch Compressor Study

To investigate performance of our chicane design

- To optimize for SASE
 - high averaged currents, longer than cooperation length
 - high charge <4nC, longitudinal flat-top and Gaussian
- To support tuning seeded FEL (by Photocathode laser pulse modulation)
- To optimize for Super radiant
 - short bunch length
 - relatively low charge 10pC-1nC, longitudinal Gaussian
- To optimize for low-q sub-ps high-repetition application
 - <1pC

~1<u>00-200A,</u> 10-20ps

Study with Simulations

performance of the bunch compressor design

- When considering
 - CSR effect
 - Space charge effect
 - Use of B-field profile
 - Charge ~ up to few nC

- Simulations
 - Scan charge up to 4 nC
 - Use distributions based on PITZ beam – optimized with booster phase

Layout of PITZ Bunch Compressor (R56 = -0.218m)

Simulation Programs

for CSR effect

Our Requirements

- Fringe field (we import field profile from CST EM studio)
- Space charge effect (we have low E beam ~ 17 MeV)

Programs (so far we know)

• according to their manuals

program	track dim	csr	sp charge	import B field	fringe field
ASTRA	3d	no?	yes	3d on "cavity"	w/ import file
IMPACT-T	3d	yes	yes	1d	Enge function
OCELOT	3d	Yes(1d)	Yes(3d)	no	no
xtrack	3d	Yes(1d)	yes (3d)	no	no

Preliminary Study w/ IMPACT-T: Bunch Charge Scan

Evolution of filaments with Input Gaussian Beam (fixed chirp, not optimized, not matched)

DESY. |Start-to-end and CSR Simulation of Bunch Compressor for the PITZ THz SASE FEL Experiment|Anusorn Lueangaramwong|10.03.2020

Preliminary Study w/ IMPACT-T: Bunch Charge Scan (cont.) profiles

- Charge ~1nC
 - forming 2 peaks in profile

Start-to-end Programs

Step1: Beam Input

For ASTRA

- Gaussian Beam
 - LE = 0.55e-3, dist_pz = 'i',
 - Dist_z = 'g', sig_clock = <u>6e-3</u>/2.355<u>µs</u>
 - Dist_x = 'r', sig_x = BSA/4,
 - Dist_y = 'r', sig_y = BSA/4,

- Flat-top Beam
 - LE = 0.55e-3, dist_pz = 'i',
 - Dist_z = 'plateau', Lt = <u>16.e-3</u>, rt = 2.e-3<u>ns</u>
 - Dist_x = 'r', sig_x = BSA/4,
 - Dist_y = 'r', sig_y = BSA/4,

Best case Flatop ~20-25ps from MBI laser

or Short Gaussian ~2ps

Step1: ASTRA scan, Finding working points for next step

Step2: IMPACT-T setup

For fast scan

- Include <u>2D</u> or 3D space charge
 - <u>x = bending axis</u>
 - Grid 64x64x64
 - Time step = 1e-13 s
- Use Fringe field element
 - extended to the maximum of ~0.5m from dipole edge
 - allow calculation of CSR in drift between dipoles
- Only includes longitudinal CSR effects
 - Already subtracts the short-range space-charge effect
- Does not include shielding and wake effect

Step2: Scan for shortest bunch length

DESY. |Start-to-end and CSR Simulation of Bunch Compressor for the PITZ THz SASE FEL Experiment|Anusorn Lueangaramwong|10.03.2020

is out of range Page 12

Step3: Analyze for highest peak currents (IMPACT-T)

Histogram w/ 64 bins (+/-1.5std)

Gaussian Beam •

> @ optimized booster phase for shortest bunch length

Flat-top Beam •

> @ optimized booster phase for shortest bunch length

Booster phase scan @900pC

Current profile

Gaussian Beam

• Flat-top Beam

Shortest Bunch Length @900pC

Summary + Discussion

- PITZ BC to achieve high current/short bunch for various applications
- Start-to-end program is used to investigate performance of our chicane design when including CSR effect
- To optimize SASE (on going)
 - ~1kA w/ rms bunch length ~ 0.17mm or 0.6ps (for 0.9nC), can be too short
 - Emittance growth due to CSR limits use of high charge
- To optimize for Super radiant
 - Shorter bunch length at lower charge (~100um from 100pC)
- Next:
 - post BC propagation
 - analyze with new goal function for optimized current profiles to SASE FEL
 - repeat with OCELOT
 - check shielding and wake effect

DESY. |Start-to-end and CSR Simulation of Bunch Compressor for the PITZ THz SASE FEL Experiment|Anusorn Lueangaramwong|10.03.2020

Questions

- What is a proper compressed profile?
 - for SASE FELs
 - for Super radiant THz radiation
 - for sub-ps application
- How stable is the compression (further propagation)
- Microbunching instability (no signature so far?)
- Transverse emittance degradation
- RF torelence

Acknowledgement

- X. Li : ASTRA scripts and FEL calculation
- P. Boonpornprasert : FEL radiation calculation
- H. Shaker : Original BC design & help with CSRtrack/OCELOT

Further Analysis : maximum peak current/averaged current

instead using peak current for shortest bunch in the booster phase scan

- Case of Gaussian Q-300.0pC phase=-25.00deg
 - Obtain ~1.5kA

Evolution of Beam Size

Shielding effect: 2 infinite shielding plate

electron orbit midway between the infinite plates (a = gap)

