

Towards measurement-based S2E beam dynamics modeling & simulations for XFEL operation (1. start-up & gun)

Ye Chen Beam dynamics meeting, Hamburg November 19, 2019

European **XFEL**

European XFEL

Outline

Motivation

- **XFEL** injector studies in October
- Strategy of studies
- Status: measurement vs. simulation
- Intermediate summary
- Roadmap

Motivation

- **Reduce** discrepancies between measurement & simulation
- **Develop** models to describe effects routinely observed in XFEL operation
- **Optimize** machine parameters for improved FEL performance
- **Explore** new working conditions / working scenarios

4

Injector measurements in Oct.

Joint proposal by Yauhen Kot, Mikhail Krasilnikov et al. for XFEL injector studies

Injector Characterization. Proposals for the machine studies.

Yauhen Kot, Igor Zagorodnov, Martin Dohlus, Chen Ye Lining and Mikhail Krasilnikov

- I. Goals
 - 1. Characterisation of the gun
 - a) Determination of the basic gun "zero" state (GZS) i.e. characterization of the gun in the usual operation mode.
 - b) Find out the solenoid calibration (s0, s1): $B_{main} = s0 + s1 \cdot I_{main}$ (database: SOLA: s0=0, s1=4E-4 T/A, SOLB: s0=0, s1=6E-4T/A)
 - c) Find out generated input charge Q_{input} at the cathode needed to achieve nominal charge of 250pC after the gun: $Q(Q_{input}, GZS) = 0.25nC$
 - d) Measure laser pulse energy needed to get Qinput
 - e) Measure the emission curve for charge vs laser transmission LT: Q=Q(LT)
 - f) Measure maximum beam mean energy (momentum) gain in the gun vs. gun gradient
 - 2. Characterization of the longitudinal beam profile:
 - a) Establish alternative calibration of A1 and AH1 with respect to each other comparing the results of the energy measurement with and without third harmonic module
 - b) Document longitudinal beam profile after A1 (with switched off AH1).
 - c) Document beam profile after AH1 with A1 operated on crest.
 - d) Document longitudinal beam profile for various settings of the chirp, 2nd and 3rd derivatives around the usual SASE WP.

Injector measurements in Oct.

Carried out on 29th-30th.10.2019

Joint efforts:

Beutner, Bolko	Krasilnikov, Mikhail
Brinker, Frank	Scholz, Matthias
Chen, Ye	Tomin, Sergey
Dohlus, Martin	Zagorodnov, Igor
Kot, Yauhen	

& the XFEL operation team

Not everything finished as planned, but managed to measure:

- 1. Schottky scans (Q vs. Φ)
- 2. Emission curves (Q vs. Elas)
- 3. Phases of MMMG and zero-crossing
- 4. Beam momentum after gun (using BK24)
- 5 Emittance measurements
- 6 TDS measurements

Ye Chen, 19.11.2019

Strategy

of measurement-based studies

- **1.** Identify realistic (not ideal) beam & machine parameters (w.r.t. theory / used in previous simulations)
- 2. Clarify significance of identified properties (with vs. without)
- 3. **Demonstrate** parametric dependences of the properties ("from a point to a range")
- 4. Develop models to describe observed behaviours
- 5. Implement models in existing tools
- 6. Compare simulation with measurement for consistency
- 7. Transfer knowledge gained from simulation to machine operation
- 8. Optimize FEL performance

Details re-noticed in measurements of Oct.

Gun power measurements

Mhfpw10xfelgun: ~5.2 MW

Directional coupler (LLRF calibration based?)

Directional Coupler

Pfor. 5.40 MW

→ Deviation exists

Latest XFEL database* 01. 2018

- Set-point power
- Measured power
- Beam momentum after gun
- Cathode field gradient

e.g. Power ≈ 5.21MW Pz ≈ 6.67 MeV/c Ecath ≈ 58.35 MV/m

Credits*: I. Isaev, M. Krasilnikov, R. Niemczyk

GUN Forward & Reflected power

Table 1: Results of momentum measurements at XFEL								
sp power	power in coupler@XFEL [MW]	power R&S@XFEL [MW]	momentum, MeV/c	gun phase, deg	Imain, A	Ibucking =0		
25	1	1.04	2.99	-16	178			
31	1.58	1.62	3.73	-25.5	214			
38	2.37	2.42	4.5	-32	257			
34	3.05	3.11	5.1	-37	288			
50	4.09	4.21	5.76	-40.5	329			
55	4.98		6.38	-43.5	359			
60.6	6.05	6.21	<mark>6.9</mark> 5	-45	394			

for directional coupler at XFEL $P_{XFEL}^{RF}[MW] = 0.00148 \cdot (E_{cath}[MV/m])^2$

for R&S device at XFEL $P_{R\&S}^{RF}[MW] = 0.00153 \cdot (E_{cath}[MV/m])^2$

Low-charge measurement of zero-crossing phase

Low charge dynamics

Measurement of MMMG phase

Simulation of beam momentum after gun

13

Diagnostics of injector laser ('Laser 2')

Measured laser temporal profiles

Streak camera measurement

Autocorrelation measurement

Gaussian-like shape 6.945 ps FWHM **2.955 ps RMS**

close numbers off by 5%
a bit noisy in the AC case

Credits: Lutz Winkelmann

Measured transverse laser distributions

Laser beam on virtual cathode BSA SP = 1.0 mm

- \rightarrow 'irregular' shape w.r.t. standard case
 - \rightarrow unclear cause
 - → charge-weighted map used to represent realistic trans. distro for simulations

DESY.

Simulations: Uniform Trans. Distro vs. Measured Trans. Distro

- Gun phase set at MMMG
- ("an extreme case") Using irregular trans. laser distribution results in up to 35% deviation w.r.t. using an uniform one
- → Different dynamics at Working Points (WP) for 250 pC
 - → Linear regime in ideal simulation
 - → Nonlinear regime already when using measured trans. distro

Simulations vs. Measurement

Discrepancy drops to 10% when using measured trans. distro, but still...
 Simulated saturation WP2: 38%
 Measured saturation WP3: 22%
 > WP for 250pC in nonlinear regime
 For more accurate simulation one needs to consider e.g.

- 'virtual cathode' formation in strong space charge density case
- photoemission model (field dependency of QE on cathode surface)
- to use a tool with 3D space charge solver from the cathode

Phase dependency of charge: measured Schottky scan

Simulation vs. Measurement: Schottky scan

- Laser intensity SP (Qin = 320 pC) indicated from the measured emission curve
- Using measured trans. laser distributions
- Laser pulse length ~ 2.96 ps rms
- Pz ≈ 6.66 MeV/c
- Stronger saturation compared to measurement
- Large discrepancies exist for higher phases

17

Simulation vs. Measurement: Schottky scan

From the simulated emission curve Laser intensity SP (Qin = 400 pC) indicated for 250pC at MMMG →smaller discrepancies for other phases?

Increasing laser intensity by ~20% renders better

agreements for [MMMG-50, MMMG+46] degrees

→ more charge actually produced in the measurements through field effects (i.e. higher effective QE for given laser pulse energy) and / or space charge force overestimated in simulations

Measured behaviours for higher phases (<MMMG-60) not yet clear

Reference to simulations performed in July 2019 (for the PITZ case)

Effect of gun coupler kick: measured orbit change along train

Cross-checked orbit change over long bunch trains due to gun coupler kick

BPM	Z [mm]	∆Xp2p [um]	Δ Yp2p [um]	Δr_meas [um] / Δr_sim [um]
BPM.24.I1	1039	35	50	61 / <mark>78</mark>
BPM.25I.I1	2139.7	110	110	156 / <mark>160</mark>

Intermediate Summary

- Simulations performed for measurements in Oct. (gun part)
 - BSA1.0, PL 2.96 ps rms, PS Gauss
 - Gun SP 55.6, Prf ≈ 5.2 MW@200µs
 - Simulated Pz ≈ 6.66 MeV/c, Ecath ≈ 58.4 MV/m
 - Simulated MMMG@46 deg from zero-crossing

Status of measurement vs. simulation

- Simulated charge at MMMG **20 pC lower, i.e. 8% at 250pC**
- ……… emission curve roughly 10% lower
- MMMG (w.r.t. zero-crossing) phase **~same** (uncertainly from measured 0 phase)
- ……… phase scan for [MMMG-50, MMMG+46] ~10-15% lower
 - I charge extraction vs. phase slippage not yet understood
 - orbit change along bunch train still consistent with current XFEL observations

Results suggest:

- Relative increase of laser intensity by 20% leads to fairly good agreements with measured charge extraction behaviours vs. RF phase & laser intensity -> more charge actually produced on the cathode (-> QE model) and / or space charge force overestimated (-> new tool)
- Use measured trans. & temp. laser distro for simulation
- Current XFEL machine working point in strong space charge dominated regime (→ more careful modelling required)
- Given asymmetric bunches at cathode & possible numerical issues, Krack 3 should be used

Roadmap

- 1. Measurements for XFEL injector re-characterization (\rightarrow done)
- 2. Corresponding gun simulations and comparisons with a set of measurements (\rightarrow done)
- 3. Reconstruction of measured longitudinal phase space by Igor (\rightarrow ongoing)
- 4. Try to improve simulations by Krack 3 simulation (\rightarrow ongoing)
- 5. Investigate trajectory change while A1 / AH1 phase scan (\rightarrow e.g. use Martin's kick model)
- 6. Benchmark projected & sliced emittance under (measured-) nominal conditions
- 7. TDS & longitudinal phase space by injector exit (\rightarrow compare with Igor's data)
- 8. Use e-bunches with measured properties for S2E simulations (\rightarrow ocelot + Genesis)

Thank you for you attention.

