

Beam Dynamics Optimization for the Hard X-ray Self-seeding at European XFEL

Shan Liu

- Work transfer from Guangyao Feng
- Hard X-ray Self-Seeding (HXRSS) simulations
- Beam dynamics optimization for HXRSS
- Preliminary results of optimization
- Future plans for S2E simulation

European

_ Work transfer from Guangyao Feng

1. EXFEL

European

FEL

- S2E simulations (20pC, 100pC, 250pC, 500pC, 1nC SASE1 & SASE3)
- Bandwidth calculation for SASE1
- Radiation calculation for SASE1 with optimized tapered undulator
- Short X-ray pulses with emittance-spoiler foil method
- Energy dechirper study with flat top current profile (250pC, 500pC)

2. FLASH

- a. S2E simulation for FLASH1
- b. FLASH2
- S2E simulation for SASE, Ip=2.5 kA
- Beam dynamics study for low slice energy spread
- Examples of S2E simulation for seeded FEL study for FLASH2 (Ip ~ 1.0 kA)

3. Other Matlab scripts

XFEL Code used in simulation

S2E simulation to get flat top current profile with 100pC for the HXRSS at EXFEL

XFEL HXRSS simulation status

SASE2 line (3 keV -25 keV) will be first equipped with HXRSS

- Combination of high rep-rate HXRSS and Tapering
- Tapering: increases power
- HXRSS: decreases bandwidth
- Used S2E simulation beam distribution (from 2013) before undulator as input
- Short bunches (FWHM<20µm) are prefered (longer bunches -> larger spatio-temporal coupling effect)

XFEL HXRSS simulation status

- Lower photon energy (<12keV)
- Less than 6 undulator cases
- > works well
- Higher photon energy (e.g.14.4keV)
- More than 6 undulators cases
- multi-peaks in power distribution
- SASE noise in spectrum

Flat energy distribution in the center preferred for HXRSS performance study:

- What is the critical energy for HXRSS?
- How many undulators should be reserved for 1st and 3rd stage?

17.5GeV, 100pC, 14.4keV, 7+7+12 undulators

XFEL Optimization procedures

- Global compression function
- Inverse global compression function _____

sion function
$$Z_N = \frac{\partial s_N}{\partial s}$$

 $C_N = \frac{1}{Z_N}$

- 2^{nd} deviation Z_3 '> symmetry of current distribution
- 3^{rd} deviation Z_3 "->flatness of current distribution (FWHM)
- 1st deviation chirp -> change compression (keep 5kA of peak current)

	зегропп	зегропп		[MV]	[deg]	[MV]	[deg]	
ACC1/39 chirp (1th)	-8.9821	-8.9821	ACC1	156.7200	17.9900	169.4372	28.4996	
ACC1/39 curvature (2nd)	463.0532	456.0574	ACC1			28.3990	-153.5228	
ACC1/39 skewness (3rd)	-226.2876	-4.0603e+04	ACC39	25.6400	-175.8700			
L1 energy gain (0th)	568.8440	568.8448	L1	639.5700	27.2000	641.6646	27.5615	
L1 chirp (1th)	-11.4276	-11.6056	L2	1.8321e+03	21.5000	1.8367e+03	21.8576	
			L3	1.5107e+04	0	1.5107e+04	0	
L2 energy gain (0th)	1.7046e+03	1.7046e+03		Before Optimization				
L2 chirp (1th)	-7.6320	-7.7720				After Optimization		

17.5GeV, 100pC, 5kA case. Optimization performed with RF tweak 5*

*Igor Zagorodnov and Martin Dohlus Phys. Rev. ST Accel. Beams 14, 014403 (2011)

> *Bolko Beutner, FEL Seminar 17.2.2015

$$Z_3' = \frac{\partial^2 s_3}{\partial s^2}(0)$$

$$Z_3''=\frac{\partial^3 s_3}{\partial s^3}(0)$$

Beam Dynamics Optimization for the Hard X-ray Self-seeding at European XFEL

European XFEL

EL Comparison of distributions after BC1

S2E Meeting, DESY, 28 March 2017

150

100

100

150

Beam Dynamics Optimization for the Hard X-ray Self-seeding at European XFEL

XFEL Comparison of distributions after BC2

Shan Liu

Beam Dynamics Optimization for the Hard X-ray Self-seeding at European XFEL

HELMHOLTZ

ASSOCIATION

European Comparison of distributions before collimator XFEL

Shan Liu

Beam Dynamics Optimization for the Hard X-ray Self-seeding at European XFEL

XFEL Comparison of distributions after collimator

Beam Dynamics Optimization for the Hard X-ray Self-seeding at European XFEL

HELMHOLTZ

ASSOCIATION

XFEL Comparison of distributions before undulator

Shan Liu

ELMHOLTZ

ASSOCIATIO

Beam Dynamics Optimization for the Hard X-ray Self-seeding at European XFEL

XFEL HXRSS simulation results comparison

after 7+7+12 undulators, tappering not implemented yet ...

S2E Meeting, DESY, 28 March 2017

15

XFEL HXRSS simulation results comparison

Averaged total spectral intensity (15 events)

XFEL Future plans

- Further HXRSS studies with 100pC case
- Improve (atomization) of optimization procedure?
- Energy chirp optimization for other charges (20pC, 1nC)
- Add wakefield in collimation section
- S2E simulation for SASE2
- Simulation with updated gun parameters
- Compare simulation results with commissioning results

Thank You!

Thanks to Guangyao Feng for all the information and discussions!

Thanks to Gianluca Geloni, Svitozar Serkez and Sergey Tomin for support on HXRSS simulations!

