Donuts in XFEL

some conclusions

tracking in XFEL

possible XY - plots (different linear transformations)

possible projections of phase space (different LT)

tracking from gun to start of L2

some conclusions

donuts happen even for the standard case (pencil beam)

they are observable for phase advances μ_x , μ_y from the cathode that fulfill the condition $\mu_x + n\pi = \mu_y + m\pi = \alpha$ (for a particular value/range of α); the necessary condition $\mu_x - \mu_y \approx (n - m)\pi$ is fulfilled in some ranges of the machine

the width of the range of α (to observe donuts) is about 20 deg (54 deg) for the hard uniform (strong ring) distribution; it was not possible to observe to ring in a wide range (width > 54 deg)

the donut is not very pronounced for the pencil beam, but the effect can be enhanced for donut shaped laser-profiles

the "cathode picture" reappears later if $\mu_x + n\pi = \mu_y + m\pi = 0$

the phase space projections (for a pencil beam) are by far not gaussian; usually the core is more populated; gaussian fits and tail clipping should give smaller emittances!

larger emittances might be explained by non-linear effects (as saturation)

tracking from gun to start of L2

standard case

bunch charge = 0.5 nC
rms width in X and Y = 0.29 mm
rms bunch length = 12 psec (3.6 mm)
gaussian distribution
solenoid optimised for this setting
0 --> 2.6 m by Astra
2.6 m --> 216 m by Xtrack (no coupler kicks)

see distribution00/versus_Z

from distribution00/versus_Z

nominal phase advance

(Winnie's data)

possible XY - plots for different linear transformations of phase space

after ACC (before quads) at OTR-B (~ 218 m)

see distribution00/ACC, distribution00/OTR

linear transformations

drift-transformation
$$[x, x'] \rightarrow [a, a'] = [x + L_1 x', x']$$
 with $\langle a, a' \rangle = 0$
 $[y, y'] \rightarrow [b, b'] = [y + L_2 y', y']$ $\langle b, b' \rangle = 0$

normalization c = a / rms(a) c' = a' / rms(a') d = b / rms(b)d' = b' / rms(b)

rotation (by angle f1,f2)

$$\begin{bmatrix} \widetilde{x}, \widetilde{x}' \end{bmatrix} = \begin{bmatrix} c, c' \end{bmatrix} \begin{bmatrix} \cos f_1 & \sin f_1 \\ -\sin f_1 & \cos f_1 \end{bmatrix}$$
$$\begin{bmatrix} \widetilde{y}, \widetilde{y}' \end{bmatrix} = \begin{bmatrix} d, d' \end{bmatrix} \begin{bmatrix} \cos f_2 & \sin f_2 \\ -\sin f_2 & \cos f_2 \end{bmatrix}$$

same phase advance from cathode: $f_1 - f_2 = n \cdot \pi/2$

from distribution00/ACC/ACC_00_A

f1 = f2 = 1 ..180 deg

from distribution00/ACC/ACC_00_A_90

f1 = f2-90deg = 1 ..180 deg

-4 -5 0 Z

× 10⁻³

for the following diagrams all particles are tracked, but only "+" particles are plotted

from distribution00/ACC/ACC_00_K

f1 = f2 = 1 ..180 deg, only "+" particles

× 10⁻³

from distribution00/OTR/OTR_00_A

f1 = f2-90deg = 1 ..180 deg

from distribution00/OTR/OTR_00_A

f1 = f2-90deg = 1 ..180 deg, only "+" particles

× 10⁻³

from distribution00/ACC/ACC_00

from distribution00/OTR/OTR_00

from distribution00/ACC/ACC_00_K only "+" particles from distribution00/OTR/OTR_00_A

possible projections of phase space

after ACC (before quads) at OTR-B (~ 218 m)

projections of horizontal (and vertical) phase space ACC, 0 = hard uniform

other distribution functions R3 = weak ring R4 = soft unifor R5 = strong ring

0 = hard uniform R3 = weak ring R4 = soft uniform R5 = strong ring

projections of horizontal (and vertical) phase space ACC, R3 = weak ring

projections of horizontal (and vertical) phase space ACC, R4 = soft uniform

projections of horizontal (and vertical) phase space ACC, R5 = strong ring

projections of horizontal and vertical phase space OTR, 0 = hard uniform

(f2 = f1-90)

projections of horizontal and vertical phase space OTR, R3 = weak ring

projections of horizontal and vertical phase space OTR, R4 = soft uniform

projections of horizontal and vertical phase space OTR, R5 = strong ring

projections of horizontal and vertical phase space OTR, 0 = hard uniform, with spatial dependent part of CK (f2 = f1-90)

