FEL Bandwidth Calculation for EXFEL SASE1 and Work Progress for FLASH2 Seeded FEL simulation

Guangyao Feng
S2E Meeting

DESY
3.11.2014
FEL Bandwidth Calculation for EXFEL SASE1

The energy chirp related FEL bandwidth calculation for different beam energy and different bunch charge cases.

E = 17.5 GeV, 14.0 GeV, 12.0 GeV, 8.5 GeV
Q = 1.0 nC, 0.5 nC, 0.25 nC, 0.1 nC, 0.02 nC

λ = 0.1 nm
Beam dynamics simulation

FEL Bandwidth Calculation for EXFEL SASE1

L1: ACC2
L2: ACC3+ ACC4+ ACC5
L3: ACC6+ ...+ ACC26

200000 particles

ASTRA (tracking with space charge effects, cylindrical symmetric algorithm)

CSRtrack (tracking with CSR effects)

TM - transverse matching to the design optics
FEL Bandwidth Calculation for EXFEL SASE1

Longitudinal phase space before SASE1 undulator:

\[
\begin{align*}
\text{E=17.5GeV, Q=1.0nC} & \quad \text{E=17.5GeV, Q=0.5nC} & \quad \text{E=17.5GeV, Q=0.25nC} & \quad \text{E=17.5GeV, Q=0.1nC} & \quad \text{E=17.5GeV, Q=0.02nC} \\
\text{E=14.0GeV, Q=1.0nC} & \quad \text{E=14.0GeV, Q=0.5nC} & \quad \text{E=14.0GeV, Q=0.25nC} & \quad \text{E=14.0GeV, Q=0.1nC} & \quad \text{E=14.0GeV, Q=0.02nC} \\
\text{E=12.0GeV, Q=1.0nC} & \quad \text{E=12.0GeV, Q=0.5nC} & \quad \text{E=12.0GeV, Q=0.25nC} & \quad \text{E=12.0GeV, Q=0.1nC} & \quad \text{E=12.0GeV, Q=0.02nC} \\
\text{E=8.5GeV, Q=1.0nC} & \quad \text{E=8.5GeV, Q=0.5nC} & \quad \text{E=8.5GeV, Q=0.25nC} & \quad \text{E=8.5GeV, Q=0.1nC} & \quad \text{E=8.5GeV, Q=0.02nC}
\end{align*}
\]
Peak-to-peak energy chirp in the lasing fraction of the bunch (FWHM)

<table>
<thead>
<tr>
<th></th>
<th>17.5 GeV</th>
<th>14 GeV</th>
<th>12 GeV</th>
<th>8.5 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 nC</td>
<td>7.05 MeV</td>
<td>7.05 MeV</td>
<td>7.00 MeV</td>
<td>6.75 MeV</td>
</tr>
<tr>
<td>0.25 nC</td>
<td>8.23 MeV</td>
<td>8.02 MeV</td>
<td>7.82 MeV</td>
<td>7.61 MeV</td>
</tr>
<tr>
<td>0.10 nC</td>
<td>11.19 MeV</td>
<td>12.01 MeV</td>
<td>12.52 MeV</td>
<td>14.05 MeV</td>
</tr>
<tr>
<td>0.02 nC</td>
<td>37.4 MeV</td>
<td>41.85 MeV</td>
<td>45.73 MeV</td>
<td>53.65 MeV</td>
</tr>
</tbody>
</table>
FEL Bandwidth Calculation for EXFEL SASE1
FEL Bandwidth Calculation for EXFEL SASE1

$\lambda = 0.1 \text{ nm}$

<table>
<thead>
<tr>
<th>λ</th>
<th>Natural bandwidth</th>
<th>Spectrum increase</th>
<th>Simulation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 nC</td>
<td>0.11%</td>
<td>0.113%</td>
<td>0.225%</td>
</tr>
<tr>
<td></td>
<td>0.1%</td>
<td>0.14%</td>
<td>0.22%</td>
</tr>
<tr>
<td></td>
<td>0.09%</td>
<td>0.165%</td>
<td>0.22%</td>
</tr>
<tr>
<td></td>
<td>0.068%</td>
<td>0.238%</td>
<td>0.22%</td>
</tr>
<tr>
<td>0.5 nC</td>
<td>0.133%</td>
<td>0.124%</td>
<td>0.229%</td>
</tr>
<tr>
<td></td>
<td>0.124%</td>
<td>0.101%</td>
<td>0.25%</td>
</tr>
<tr>
<td></td>
<td>0.103%</td>
<td>0.117%</td>
<td>0.237%</td>
</tr>
<tr>
<td></td>
<td>0.078%</td>
<td>0.159%</td>
<td>0.235%</td>
</tr>
<tr>
<td>0.25 nC</td>
<td>0.14%</td>
<td>0.134%</td>
<td>0.256%</td>
</tr>
<tr>
<td></td>
<td>0.134%</td>
<td>0.114%</td>
<td>0.25%</td>
</tr>
<tr>
<td></td>
<td>0.110%</td>
<td>0.13%</td>
<td>0.248%</td>
</tr>
<tr>
<td></td>
<td>0.083%</td>
<td>0.179%</td>
<td>0.264%</td>
</tr>
<tr>
<td>0.10 nC</td>
<td>0.16%</td>
<td>0.155%</td>
<td>0.292%</td>
</tr>
<tr>
<td></td>
<td>0.155%</td>
<td>0.165%</td>
<td>0.36%</td>
</tr>
<tr>
<td></td>
<td>0.120%</td>
<td>0.209%</td>
<td>0.33%</td>
</tr>
<tr>
<td></td>
<td>0.090%</td>
<td>0.331%</td>
<td>0.464%</td>
</tr>
<tr>
<td>0.02 nC</td>
<td>0.167%</td>
<td>0.160%</td>
<td>0.640%</td>
</tr>
<tr>
<td></td>
<td>0.160%</td>
<td>0.152%</td>
<td>0.65%</td>
</tr>
<tr>
<td></td>
<td>0.152%</td>
<td>0.122%</td>
<td>0.56%</td>
</tr>
<tr>
<td></td>
<td>0.122%</td>
<td>0.58%</td>
<td>0.58%</td>
</tr>
</tbody>
</table>

1) **Natural bandwidth:** $\left| \frac{\Delta \lambda}{\lambda_0} \right|_{\text{FWHM}} \sim 2\rho$ \hspace{2cm} (ρ: FEL parameter)

2) **Spectrum increase** according to: $2 \left| \frac{\Delta E}{E_0} \right|_{\text{FWHM}}$

3) **Simulation results:** FWHM values of the spectrum from Genesis (5 random seeds for shot noise)
Seeded FEL Simulation for FLASH2

Previous work

Peak power $P_{\text{laser}} = 125$ MW
Rayleigh length $z_R = 4.2$ m
Pulse duration of $\tau = 30$ fs (FWHM)
Wavelength $\lambda = 235$ nm

Q = 0.5 nC
Seeded FEL Simulation for FLASH2

New model of the seeding laser

- Pulse energy = 6.0 μJ
- Rayleigh length $z_R = 4.2$ m
- Pulse duration of $\tau = 100$ fs (FWHM)
- Wavelength $\lambda = 266$ nm

Total length ~ 90 μm

$Q = 1.0$ nC

$\varepsilon_x^{proj} = 2.19 \mu m \cdot rad, \varepsilon_y^{proj} = 2.18 \mu m \cdot rad$
Seeded FEL Simulation for FLASH2

<table>
<thead>
<tr>
<th>Modulator 1</th>
<th>Radiator 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_u = 6.7 \text{ cm}$</td>
<td>$\lambda_u = 3.14 \text{ cm}$</td>
</tr>
<tr>
<td>$N = 30$</td>
<td>$N = 152$</td>
</tr>
<tr>
<td>$L_u \sim 2 \text{ m}$</td>
<td>$L_u \sim 4.773 \text{ m}$</td>
</tr>
</tbody>
</table>

$\lambda/7 (n=?)$

$\lambda/7 = 266 \text{ nm}$

$\lambda/7 = 38 \text{ nm}$

$76 \times \lambda_u + Q + 76 \times \lambda_u$

Schematic layout of the seeding undulator section

<table>
<thead>
<tr>
<th>Extraction arc section</th>
<th>Modulator-1</th>
<th>Radiator-1</th>
<th>Modulator-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01 m</td>
<td>19.41 m</td>
<td>2.39 m</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beam optics matching</th>
<th>Beta function [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_x</td>
<td>β_y</td>
</tr>
</tbody>
</table>

$z [\text{ m}]$

$0 3 6 9 12 15 18 21$

$0 10 20 30 40 50$

Beta function [m]
Seeded FEL Simulation for FLASH2

Energy modulation at the exit of the modulator

\[I = \frac{c q k E_{mod}}{\sqrt{2 \pi} \sigma_E} \]

\[E_{mod} \sim 0.8 \text{ MeV} \]
Seeded FEL Simulation for FLASH2

Estimations in the dispersive chicane:

(1) r_{56} for the complete compression (referring to the middle of the modulated part of the bunch): $r_{56} = E/(kE_{mod}) = 53 \ \mu m \rightarrow R \sim 14.5 \ m$

(2) rms length of the sub-bunches after complete compression: $\sigma = \frac{r_{56}E}{E} \approx 8 \ nm$

(3) Charge in one wavelength: $q_{\lambda} = I \frac{\lambda}{c} \approx 0.887 \ pC$

(4) Charge which can be compressed: $q = q_{\lambda}/2$

(5) Scaling of steady state csr of gaussian bunch: $E_c = \frac{1}{\sqrt[3]{3(2\pi)^2R^3\sigma^3}} \frac{q}{\varepsilon} \sim 23.4 \ MV/m$

CSRtrack simulation:

(1) required resolution $\sim 4 \ nm \ll \sigma$

(2) required step width $\sim 0.2 \ mm \ll R \sigma/\sigma_x = 1 \ mm$

(3) Particle number $\sim 15 \ M$

CSRTrack simulation is in process …
Plans

(1) Harmonic optimization for the radiator.
(2) Continue to do the cascaded HGHG simulation.