Low Beam Energy Spread for FLASHII HGHG Option

Guangyao Feng
S2E Meeting, DESY
25.11.2013
The plan for this month

1. Low energy spread for FLASHII HGHG option (100%)

2. Particle distributions of FLASH for Johann Zemella for special purpose of plasma study. (100%)

3. The internal report for EXFEL simulations (~100%)
Achieved progress

1. Low energy spread for FLASHII HGHG option (100%)

Requirements:

1) The global slice length: \(~15\) um slice = 50 fs
 Maximal energy chirp (correlated energy spread) along the global slice \(~150\) keV

2) Min current along the global slice: Should exceed at least 0.5 kA

3) Maximal local slice emittance along the global slice?: 1.5 um

4) Maximal local (uncorrelated) energy spread: \(~100\) keV
Low energy spread for FLASHII HGHG option

<table>
<thead>
<tr>
<th>Charge nC</th>
<th>V_{acc1}^* [MV]</th>
<th>ϕ_{acc1} [deg]</th>
<th>V_{acc39} [MV]</th>
<th>ϕ_{acc39} [deg]</th>
<th>$V_{acc2,3}$ [MV]</th>
<th>$\Phi_{acc2,3}$ [deg]</th>
<th>$V_{acc4,5,6,7}$ [MV]</th>
<th>$\Phi_{acc4,5,6,7}$ [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>160.4</td>
<td>-3.2</td>
<td>21.9</td>
<td>153.4</td>
<td>337.3</td>
<td>25.0</td>
<td>550.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* Same voltage amplitude has been used for the first 4 cavities and the last 4 cavities of ACC1 $V_{1-4} = V_{5-8}$

$\sigma_E > 300$keV

FLASH II HGHG option need beam bunch with low slice energy spread !!!
Low energy spread for FLASHII HGHG option

RF settings in accelerating modules for **CASE2** (1.0nC)

<table>
<thead>
<tr>
<th>Charge nC</th>
<th>V_{acc1} [MV]</th>
<th>ϕ_{acc1} [deg]</th>
<th>V_{acc39} [MV]</th>
<th>ϕ_{acc39} [deg]</th>
<th>$V_{acc2,3}$ [MV]</th>
<th>$\Phi_{acc2,3}$ [deg]</th>
<th>$V_{acc4,5,67}$ [MV]</th>
<th>$\Phi_{acc4,5,6,7}$ [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>143.33</td>
<td>-5.1</td>
<td>20.63</td>
<td>149.4</td>
<td>337.3</td>
<td>25.0</td>
<td>550.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

In ACC1, $V_{1-4} : V_{5-8} = 2:3$

Significant difference can be found in ACC1
Conclusion:
1. Higher energy gradient in the first cavity of ACC1 may lead to a transverse over focusing on the beam bunch. The stronger space charge force will make the slice energy spread and transverse emittance become larger.

2. When keeping $V_{1-4}=V_{5-8}$ in ACC1, it is not easy to make a significant improvement to get the low slice energy spread by optimizing the RF parameters of ACC1 and ACC39 in a reasonable region.

3. A proper voltage distribution ($V_{1-4}:V_{5-8}$) in ACC1 may bring two advantages:
 (1) Lower energy gradient in the first cavity of ACC1 to avoid transverse over focusing.
 (2) High beam energy gain after ACC1 to reduce the space charge effects.
Low energy spread for FLASHII HGHG option

Conditions for new calculation:

1. Keeping the same accelerating gradient for each cavity of ACC1.
2. Low energy spread calculation with low longitudinal compression in BC3 (Low peak current)

Parameter settings for the bunch compressors

<table>
<thead>
<tr>
<th>Charge Q, nC</th>
<th>Curvature radius in BC2, r1 [m]</th>
<th>Momentum compaction factor in BC2, R_{56,2} [mm]</th>
<th>compr. In BC2</th>
<th>Curvature radius in BC3, r2 [m]</th>
<th>Momentum compaction factor in BC3, R_{56,3} [mm]</th>
<th>Total compr. C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.618</td>
<td>180.7</td>
<td>2.7</td>
<td>5.55</td>
<td>90.5</td>
<td>15</td>
</tr>
<tr>
<td>0.5</td>
<td>1.618</td>
<td>180.7</td>
<td>4.7</td>
<td>6.25</td>
<td>71.2</td>
<td>47</td>
</tr>
<tr>
<td>0.25</td>
<td>1.618</td>
<td>180.7</td>
<td>6.4</td>
<td>6.85</td>
<td>59.2</td>
<td>77.5</td>
</tr>
<tr>
<td>0.10</td>
<td>1.618</td>
<td>180.7</td>
<td>11.7</td>
<td>8.55</td>
<td>37.9</td>
<td>120</td>
</tr>
</tbody>
</table>

E1=145.5MeV, E2=450MeV

Curvature radius in BCs\(^#\) \[1.4 \leq \frac{r_1}{m} \leq 1.93\] \[5.3 \leq \frac{r_2}{m} \leq 16.8\]
Low energy spread for FLASHII HGHG option

RF settings in accelerating modules for different bunch charge cases

<table>
<thead>
<tr>
<th>Charge nC</th>
<th>V_{acc1} [MV]</th>
<th>φ_{acc1} [deg]</th>
<th>V_{acc39} [MV]</th>
<th>φ_{acc39} [deg]</th>
<th>$V_{\text{acc2,3}}$ [MV]</th>
<th>$\Phi_{\text{acc2,3}}$ [deg]</th>
<th>$V_{\text{acc4,5,6,7}}$ [MV]</th>
<th>$\Phi_{\text{acc4,5,6,7}}$ [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>160.4</td>
<td>-3.2</td>
<td>21.9</td>
<td>153.4</td>
<td>323.3</td>
<td>19.0</td>
<td>623.0</td>
<td>-28.0</td>
</tr>
<tr>
<td>0.50</td>
<td>159.5</td>
<td>2.4</td>
<td>19.8</td>
<td>162.6</td>
<td>323.3</td>
<td>19.0</td>
<td>623.0</td>
<td>-28.0</td>
</tr>
<tr>
<td>0.25</td>
<td>159.9</td>
<td>1.9</td>
<td>20.5</td>
<td>160.5</td>
<td>323.3</td>
<td>19.0</td>
<td>623.0</td>
<td>-28.0</td>
</tr>
<tr>
<td>0.10</td>
<td>160.0</td>
<td>-1.0</td>
<td>21.9</td>
<td>152.6</td>
<td>323.3</td>
<td>19.0</td>
<td>623.0</td>
<td>-28.0</td>
</tr>
</tbody>
</table>

* Same voltage amplitude has been used for each cavity of ACC1

RF power restrictions:

Maximum energy gain for accelerating modules

<table>
<thead>
<tr>
<th>Accelerating Module</th>
<th>Energy Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC1</td>
<td>165 MeV</td>
</tr>
<tr>
<td>ACC39</td>
<td>22 MeV</td>
</tr>
<tr>
<td>ACC2/3</td>
<td>345 MeV</td>
</tr>
<tr>
<td>ACC4/5</td>
<td>320 MeV</td>
</tr>
<tr>
<td>ACC6/7</td>
<td>430 MeV</td>
</tr>
</tbody>
</table>
Low energy spread for FLASHII HGHG option

ASTRA (tracking with space charge effects, 3D calculation)

CSRtrack (tracking with CSR effects)

TM - transverse matching to the design optics
Low energy spread for FLASHII HGHG option (1.0nC)

Current profile along the beam line
Longitudinal phase space along the beam line

Low energy spread for FLASHII HGHG option (1.0nC)
Low energy spread for FLASHII HGHG option (1.0nC)

\[\varepsilon_x^{proj} = 1.89 \mu m \cdot rad, \varepsilon_y^{proj} = 1.90 \mu m \cdot rad \]

6% bad particles are removed

Slice energy spread distribution (uncorrelated)

Energy spread within 15\(\mu\)m and 10\(\mu\)m slice length
Low energy spread for FLASHII HGHG option (0.5nC)

Current profile along the beam line
Longitudinal phase space along the beam line

Low energy spread for FLASHII HGHG option (0.5nC)
Low energy spread for FLASHII HGHG option (0.5nC)

\[\varepsilon_{x}^{\text{proj}} = 1.0 \mu m \cdot \text{rad}, \varepsilon_{y}^{\text{proj}} = 0.98 \mu m \cdot \text{rad} \]

5% bad particles are removed

Slice energy spread distribution (uncorrelated)

Energy spread within 15\(\mu \text{m} \) and 10\(\mu \text{m} \) slice length
Low energy spread for FLASHII HGHG option (0.25nC)

Current profile along the beam line
Low energy spread for FLASHII HGHG option (0.25nC)

Longitudinal phase space along the beam line
Low energy spread for FLASHII HGHG option (0.25nC)

$\varepsilon_x^{proj} = 0.63 \mu m \cdot rad, \varepsilon_y^{proj} = 0.62 \mu m \cdot rad$

5% bad particles are removed

Slice energy spread distribution (uncorrelated)
Low energy spread for FLASHII HGHG option (0.10nC)

Current profile along the beam line
Low energy spread for FLASHII HGHG option (0.10nC)

Longitudinal phase space along the beam line
Low energy spread for FLASHII HGHG option (0.10nC)

\[\varepsilon_x^{\text{proj}} = 0.40 \mu m \cdot \text{rad}, \varepsilon_y^{\text{proj}} = 0.39 \mu m \cdot \text{rad} \]

9.5% bad particles are removed

Slice energy spread distribution (uncorrelated)

Energy spread within 15μm and 10μm slice length