

Simulation for EXFEL SASE3 and FLASHII

Guangyao Feng 16.09.2013 MPY, DESY

Contents

- \succ The plan for last month
- Achieved progress
- ≻The plan for this month

The plan for last month

1. The particle distribution file conversion from genesis output to Astra input at the exit of SASE1 for 0.5nC charge case. (100%)

2. Beam dynamics simulation between SASE1 and SASE3 for 0.5nC charge case. (50%)

The newest version of Genesis which supports HDF5 output.
Setting IONE4ONE=1.

The macro particles have the same charges per slice. The number of particles in each slice can be adjusted automatically to keep the original current profile (Npar=8000).

3. ZSEP=20

Nslice=(s1-s0)/(ZSEP×XLAMDs)

Structure of Genesis particle output file

$$z = \frac{\phi\lambda}{2\pi} + i \times \lambda \times ZSEP$$

Two methods to get the Genesis output particle distribution file

(1) IDMPPAR

Dumping the particle distribution at the exit of the undulator.

(2) IPPART and ISPART

Writing the particle distribution to file at each IPPARTth integration step. Wrting the particle distribution to file for every ISPART slice.

Beam dynamics simulation and radiation calculation for SASE3 (Done)

Q=0.5nC, E~17.5GeV, I_{peak}~5kA

Before SASE1

$$\varepsilon_x^{proj} = 0.65 \mu m \cdot rad, \varepsilon_y^{proj} = 1.8 \mu m \cdot rad$$

ε_v [μm]

20

30

40

50

SASE3 calculation

 $\lambda u=68mm, K=3.63497, \lambda \sim 0.4nm$

(SASE1 switched on)

One random seed

(SASE1 switched off)

Simulation for FLASHII

*****At the end of the linac

E=1.0GeV

```
I_{peak} = \sim 2.5 kA
```

*****Beam energy at some key positions

Parameter Settings

Parameters for the bunch compressors

Charge	Curvature	Momentum	compr.	Curvature	Momentum	Total
Q,	radius in	compaction	In	radius in	compaction	compr.
nC	BC_2	factor in BC _{2.}	BC2	BC ₃	factor in BC _{3,}	C
	r1 [m]	R _{56,2} [mm]		r2 [m]	R _{56,3} [mm]	
1.0	1.618	180.7	2.7	5.770	83.6	55
0.5	1.618	180.7	4.7	6.615	63.5	82
0.25	1.618	180.7	6.4	7.210	53.4	120
0.10	1.618	180.7	11.7	8.770	36.0	298
0.02	1.618	180.7	54.8	14.000	14.1	670

E1=145.5MeV, E2=450MeV

Curvature radius in BCs[#] $1.4 \le \frac{r_1}{m} \le 1.93$ $5.3 \le \frac{r_2}{m} \le 16.8$ Exciting current* **I**BC2~70.93A **I**BC3~ <62.00A

Igor Zagorodnov, Beam Dynamics and FEL Simulations for FLASH, 2010, BD meeting, DESY * Estimation formula from Martin Dohlus

Parameter Settings

RF settings in accelerating modules for different bunch charge cases

Charge nC	Vacc1 [MV]	φacc1 [deg]	Vacc39 [MV]	φacc39 [deg]	Vacc2,3 [MV]	$\Phi_{acc2,3}$ [deg]	Vacc4,5,67 [MV]	Φacc4,5,6,7 [deg]
1.0	160.4	-3.2	21.9	153.4	337.3	25.0	550.0	0.0
0.50	159.5	2.4	19.8	162.6	337.3	25.0	550.0	0.0
0.25	159.9	1.9	20.5	160.5	337.3	25.0	550.0	0.0
0.10	160.0	-1.0	21.9	152.6	337.3	25.0	550.0	0.0
0.02	160.4	3.3	21.0	162.0	337.3	25.0	550.0	0.0

***RF power restrictions:**

Maximum energy gain for accelerating modules

ACC1	165 MeV
ACC39	22 MeV
ACC2/3	345 MeV
ACC4/5	320 MeV
ACC6/7	430 MeV

Beam dynamics simulation for FLASHII for different bunch charge cases

ASTRA (tracking with space charge effects, cylindrical symmetric algorithm)

CSRtrack (tracking with CSR effects)

- W1 -TESLA cryomodule wake (TESLA Report 2003-19, DESY, 2003)
- W3 ACC39 wake (TESLA Report 2004-01, DESY, 2004)
- TM transverse matching to the design optics

Current profile along the beam line

Beam dynamics simulation for FLASHII for Q=1.0nC

Beam dynamics simulation for FLASHII

Beam dynamics simulation for FLASHII

 $\varepsilon_x^{proj} = 1.42 \mu m \cdot rad, \varepsilon_y^{proj} = 0.54 \mu m \cdot rad$

SASE FEL simulation*

Slice parameters are extracted from s2e simulations for SASE simulation

 $\gamma \quad \Delta \gamma \quad \varepsilon_x \quad \varepsilon_y \quad \beta_x \quad \beta_y \quad \langle x \rangle \quad \langle y \rangle \quad \langle x' \rangle \quad \langle y' \rangle \quad \alpha_x \quad \alpha_y \quad I$

* The magnet description file for the undulator system comes from Matthias Scholz.

The plan for this month

Preparing the internal report for EXFEL simulation.