Dispersion–Free Steering (→ BBA)

for the SASE Undulators of the XFEL

(Work in Progress !)

23.02.2009

Mathias Vogt (DESY–MPY)
lots of input from: W.Decking, P.Castro, B.Faatz,…

• Why BBA
• What the Heck is Dispersion–Free Steering ?
• The Model
• Preliminary Results
Orbit Requirements for the SASE Process

- Resonant interaction of charged particle and undulator radiation
 \[\Rightarrow\text{Particle orbit and radiation cone } (\sim 1/\gamma) \text{ must overlap}\]
- Beam orbit excursion in undulator \(\ll\) rms beam envelope
 \[\Rightarrow\text{longitudinal scale } \sim\text{ gain length}\]

BAD ORBIT:
- Strong orbit fluctuations
 \[\Rightarrow\text{overlap only over short ranges } \ll\text{ radiation length}\]
 \[\Rightarrow\text{weak (or no) SASE signal}\]

GOOD ORBIT:
- Flat orbit
 \[\Rightarrow\text{overlap only over most of undulator } >\text{ radiation length}\]
 \[\Rightarrow\text{potentially: “saturation”}\]
XFEL Undulator SASE-1

SASE-1 and half of T4

- misaligned quads
 ⇒ perturbed orbit
- initial quad misalignment & BPM offsets ≈ 300μm (?)
 ⇒ beam-based-alignment (=BBA) necessary
- in SASE-1: high resolution cavity BPMs:
 res → 1μm — 3μm
- correctors ≡ quad movers
- in T4: most likely only:
 res → 20μm — 50μm

Target for orbit: \textbf{rms (over ∼20m)} < 3μm

⇒ BBA will be tricky (mainly due to large unknown offsets)

- Option-1: try Dispersion–Free Steering
 (dispersion measurement only needs a difference orbit!)
(What the heck is) Dispersion–Free Steering

- Orbit (= dipole) kicks create (spurious) dispersion

+ given N perturbations
 (= correctors) $\{K_i\}_{1 \leq i \leq N}$
 and M BPMs

+ yields
 M measured orbits
 $\{X_i\}_{1 \leq i \leq M}$
 + M measured dispersions
 $\{D_i\}_{1 \leq i \leq M}$

+ measured \vec{X} ← offset +
 statistical fluctuations

+ measured \vec{D} ← statistical fluctuations only

→ causality in beam line: each upper right $\rightarrow 0$

→ $2M$ conditions for N corrector settings \Rightarrow

→ overdetermined system:
 w/o errors \rightarrow conditions linearly dependent
 w/ errors \rightarrow least squares solution \rightarrow SVD
Dispersion–Free Steering (2)

- Introduce weight w

 $$(0 \rightarrow \text{orbit-only}, \quad 1 \rightarrow \text{dispersion-only})$$

 $$(\begin{pmatrix} (1 - w)\vec{X} \\ w\vec{D} \end{pmatrix}) = (\begin{pmatrix} (1 - w)\vec{Q} \\ w\vec{D} \end{pmatrix}) \vec{K}$$

 or shorthand:

 $\vec{\Xi}(w) = A(w)\vec{K}$

$\vec{\Xi} \in \mathbb{R}^{2M}$:= “real” orbit/dispersion,

$A \in \mathbb{R}^{2N \times M}$:=
combined orbit dispersion response matrix

- i-th Measurement: add systematic (const \vec{C}) and statistical (\vec{S}_i) errors

 $\vec{\xi}_i(w) = A(w)\vec{K}_i + \vec{C} + \vec{S}_i$

- and iterate corrected dipole kicks $\rightarrow \vec{\Phi}_i$

 with error $\rightarrow \vec{\Delta}_i$

 $\vec{K}_i = \vec{K}_{i-1} - \vec{\Phi}_i - \vec{\Delta}_i$

How to compute $\vec{\Phi}_i$?

- assuming NO orbit/dispersion from upstream SASE-1!

 iff $\vec{C} \equiv \vec{S}_i \equiv \vec{\Delta}_i \equiv 0 \forall i$

 (& assuming A is completely known)

 $\Rightarrow \vec{\xi} \equiv \vec{\Xi} = A\vec{K}$ is fully redundant, i.e.

 $\exists A^* \in \mathbb{R}^{M \times 2N}$ with $\vec{K} \equiv \vec{\Phi} := A^*\vec{\Xi}$

- The “pseudo–inverse” A^* can be computed using a Singular Value Decomposition (SVD)

- In fact SVD + “τ–regularization” allow some control over correcting the highly correlated (= potentially “real”) orbit/dispn. components rather than the weakly correlated (= contaminated) components

$\Rightarrow \ldots$
SVD $+$ for DispFree Steering

$$A = U \text{ diag}(\{\sigma_k\}) V^T$$

- for non-degenerate phase advances $\Rightarrow A$ has full rank
 $\iff \sigma_k > 0 \ \forall k$

 $\Rightarrow A^* := V \text{ diag}(\{\sigma_k^{-1}\}) U^T$

- if system is underdetermined

 \Rightarrow solution of $\vec{\Xi} = A \vec{K}$ is
 $\vec{K} \in \vec{K}_{\text{part}} + \text{ker}(A)$

 \Rightarrow SVD gives “minimal” solution: $\|A^* \vec{\Xi}\|_2 = \min$

- if system is overdetermined \Rightarrow solution \exists only in the
 “least square” sense

 \Rightarrow SVD yields solution with minimal residue:
 $\|\vec{\Xi} - A (A^* \vec{\Xi})\|_2 = \min$
\(\tau \)-regularization for DispFree Steering

- **What if some** \(\sigma_i = 0 \) ???
- \(\rightarrow \) just redefine \(\mathbf{A}^* := \mathbf{V} \text{diag}(\{(\sigma_k > 0)^{-1}, 0 \ldots\}) \mathbf{U}^T \)
- \(\Rightarrow \) yields least square solution !

- **MORE GENERAL**: condition of \(\mathbf{A} \): \(\text{cond}(\mathbf{A}) := \frac{\max_i \{\sigma_i\}}{\min_i, \sigma_i > 0 \{\sigma_i\}} \)
 - \(\rightarrow \) large cond means that solutions \(\mathbf{K} \) of linear system \(\mathbf{A} \mathbf{K} = \mathbf{E} \) strongly depend on small variations (←errors!) of \(\mathbf{E} \)
 - \(\rightarrow \) to improve (=decrease) condition: set \(\sigma_j \rightarrow 0, \forall \sigma_j < \tau \) with some
 - **regularization parameter** \(\tau \)
- ... and redefine \(\mathbf{A}^*(\tau) := \mathbf{V} \text{diag}(\{(\sigma_k > \tau)^{-1}, 0 \ldots\}) \mathbf{U}^T \)
- \(\Rightarrow \) for **Dispersion–Free Steering**:
 - \(\Leftrightarrow \) use only highly correlated orbit/dispn modes !!!
 & ignore strongly contaminated orbit/dispn modes !!!
- \(\Rightarrow \) **correct orbit/dispn with**: \(\Phi_i = \mathbf{A}^*(\tau) \mathbf{\tilde{\xi}}_{i-1} \)
Model of BBA for SASE-1

- initial rms quad misalignment: 300μm
- rms BPM–offset: 200μm
- rms BPM statistical error in SASE-1: 1μm
- rms BPM statistical error in T4: 50μm
- rms mover error: 1μm
- “*” means: as a starting point take BPMs in T4 as good as in SASE-1 and no mover errors

- correction method (A): global, variable gain, weight, τ:
 \[\vec{\Phi}_i = gA^*(w, \tau) \xi_{i-1} \]

- correction method (B): local (l to m), variable gain, weight, const τ = 0:
 \[\vec{\Phi}_i|_{l,m} = gA^*(w, 0)|_{l,m} \xi_{i-1} \]

- no orbit/dispn from upstream SASE-1
- PERT: 33 misaligned quads in SASE-1
- CORR: 33 quad–movers in SASE-1
- 51 BPMs: 33 in SASE-1 + 18 in T4 upstream dispersive section
- ORM & DRM w.r.t. quad–misalignment ← mad–8 (“1mad”)
- all errors (\(\vec{K}_0, \vec{C}, \vec{S}_i, \vec{\Delta}_i\)):
 independent Gaussian RV
Simulation Parameters (1-st try)

- initial quad misalignment: $\vec{\Delta}_0$-rms: 300μm
- systematic offsets: \vec{C}_X-rms: 200μm ; \vec{C}_D-rms: 0 \leftrightarrow difference orbit!
- resolution: $\vec{S}_i|_X$-rms = $\vec{S}_i|_D$-rms: 1μm \Leftrightarrow only 3% dp/p acceptance
 \rightarrow multi-shot average to reduce $\vec{S}_i|_D$-rms
- mover errors: $\vec{\Delta}_i = 0$, $i > 0$

Correction Sequence v001a :

<table>
<thead>
<tr>
<th>step</th>
<th>w</th>
<th>$I_{\text{max}}^{s.v.}$</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>4</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0.80</td>
<td>22</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>0.95</td>
<td>22</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
<td>27</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Correction Sequence v003a :

<table>
<thead>
<tr>
<th>step</th>
<th>w</th>
<th>$I_{\text{max}}^{s.v.}$</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>33*</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0.950</td>
<td>33*</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>0.900</td>
<td>21</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>0.999</td>
<td>4</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*: all singular values!
Singular Values for chosen $w / v001a$

Singular Values (CorrSeq v001a)
Finding the Right $I_{\text{max}}^{s,v.}$ for Each Step / v001a orbit

estimated rms-orbit vs. max number of used S.V. / CorrSeq v001a / seed x
Finding the Right $I_{s.v.}^{\text{max}}$ for Each Step / v001a dispn

estimated rms-dispn vs. max number of used S.V. / CorrSeq v001a / seed x
Singular Values for chosen $w / v003a$

Singular Values (CorrSeq v003a)
Finding the Right $I_{\max}^{s,v.}$ for Each Step / v003a orbit

estimated rms-orbit vs. max number of used S.V. / CorrSeq v003a / seed x

$1 \leq I_{\max}^{s,v.} \leq M_{hnm}$
Finding the Right $J_{\text{max}}^{s.v.}$ for Each Step / v003a dispn

estimated rms-dispn vs. max number of used S.V. / CorrSeq v003a / seed x

- $1 \leq J_{\text{max}}^{s.v.} \leq M_{\text{bpm}}$

Graph showing the estimated rms-dispersion/μm vs. the maximum number of used S.V. for different steps.
Initial Orbits / all seeds

CorrSeq : v001a, v003a

- seed a
- seed b
- seed c
- seed d
- seed e
- seed f
- seed g
- seed h
- seed i
- seed j
- seed k
Result of Correction Sequence v001a

![Graph showing the final orbit in µm for different seeds.](image)

CorrSeq : v001a

- seed a
- seed b
- seed c
- seed d
- seed e
- seed f
- seed g
- seed h
- seed i
- seed j
- seed k
Result of Correction Sequence v001a (BEST)

CorrSeq : v001a

-final orbit / µm

1 <= i <= M_{bpm}
Result of Correction Sequence v003a
Result of Correction Sequence v003a (BEST)

CorrSeq : v003a

final orbit [µm]

1 <= i <= M_{bpm}
A More Realistic Example . . .

CorrSeq v010 (1-st attempt = yesterday!!) :

Parameters:

- initial quad misal. : $\vec{\Delta}_0$-rms : 300\,μm
- systematic offsets : $\vec{C}_{\vec{X}}$-rms : 300\,μm
 but $\vec{C}_{\vec{D}}$-rms : 0 \leftarrow difference orbit!
- resolution : $S_{\vec{X}}^{\text{SASE1}}$-rms : 1\,$\mu$m

\[
\begin{array}{ccc|ccc}
\text{step} & \text{range} & w & I_{\text{s.v.}}^{\max} & g \\
1 & 1 - 33 & 0.00 & 5 & 1.0 \\
2 & 1 - 33 & 0.80 & 17 & 1.0 \\
3 & 1 - 33 & 0.95 & 3 & 1.0 \\
4 & 1 - 33 & 0.95 & 22 & 1.0 \\
5 & 1 - 33 & 0.99 & 2 & 1.0 \\
6 & 1 - 33 & 1.00 & 5 & 0.5 \\
7 & 1 - 33 & 1.00 & 5 & 0.5 \\
8 & 1 - 33 & 1.00 & 3 & 0.5 \\
9 & 1 - 10 & 1.00 & 10^* & 0.5 \\
10 & 8 - 17 & 1.00 & 10^* & 0.5 \\
11 & 15 - 24 & 1.00 & 10^* & 0.5 \\
\end{array}
\]

*: all singular values!
All BPMs in T40: 20× worse Resolution (1-st attempt = yesterday!!)

CorrSeq : v010 / seed x

orbit / µm

1 <= i <= M_{bpm}
All BPMs in T40: 20× worse Resolution (1-st attempt = yesterday!!)
All BPMs in T40: 20× worse Resolution (1-st attempt = yesterday!!)

CorrSeq : v010 / seed x
A Slightly More Expensive Example . . .

CorrSeq v020 (2-nd attempt = today!!) :

Parameters :

- initial quad misal. : Δ_0-rms : 300μm
- systematic offsets : $C\big|_\vec{X}$-rms : 300μm
 but $C\big|_\vec{D}$-rms : 0 ← difference orbit!

- resolution :
 - $\vec{S}_i\big|_{\text{SASE1} + 1\text{-st 5 in T4}}$-rms : 1$\mu$m
 - $\vec{S}_i\big|_{\text{T4 (rest)}}$-rms : 20$\mu$m
 - $\vec{S}_i\big|_{\text{SASE1} + 1\text{-st 5 in T4}}$-rms : 20$\mu$m
 - $\vec{S}_i\big|_{\text{T4 (rest)}}$-rms : 400$\mu$m

- mover errors : $\Delta_i = 1$, $i > 0$

<table>
<thead>
<tr>
<th>step</th>
<th>w</th>
<th>$I_{\text{max}}^{\text{s.v.}}$</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>5</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0.80</td>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>0.80</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>0.80</td>
<td>18</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>0.80</td>
<td>18</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>0.80</td>
<td>11</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>0.80</td>
<td>19</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>0.80</td>
<td>19</td>
<td>0.7</td>
</tr>
<tr>
<td>9</td>
<td>0.95</td>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.95</td>
<td>18</td>
<td>0.5</td>
</tr>
<tr>
<td>11</td>
<td>0.95</td>
<td>8</td>
<td>0.5</td>
</tr>
</tbody>
</table>
All but 1-st 5 BPMs in T40: 20× worse Resolution (2-nd attempt = today!!)
All but 1-st 5 BPMs in T40: 20× worse Resolution (2-nd attempt = today!!)
All but 1-st 5 BPMs in T40: 20× worse Resolution (2-nd attempt = today!!)
All but 1-st 5 BPMs in T40 : 20× worse Resolution \(2\)-nd attempt = today!!

CorrSeq : v020 / seed x

![Graph showing BPM resolution comparison across different steps.](image-url)
TODO:

- Larger parameter space to be scanned (including varying of BPM–distribution)
- y–plane !!!! & SASE-2,-3,…
- Include deviations of actual (=unknown) ODRM from design–ODRM (=known)
- Include x/y–coupling
- Implement also uniform RVs, etc
- Implement drifts (time domain correlations)
- Include non–linear dispersion into application of the kicks

SUMMARY:

- Work in progress!!
- Even with state of the art diagnostics : orbit constrains for SASE very tight!
- In particular : initial misalignment and BPM–offsets are tough
- Strategy : dispersion–free steering with variable weighting between orbit and dispersion, variable τ (→strongly vs. weakly correlated modes) and variable gain.
- Result so far : with realistic tolerances and reduced BPM–resolution upstream of the undulators the constraints seem extremely hard to meet!