Dispersion Effects on SASE at FLASH

- SASE dependence on e⁻ trajectory
- SASE vs e⁻ energy for different dispersion scenarios
- SASE spectrum dependence on dispersion

Measurements done 11 & 15 October 2008 (total=1 shift)
Simulations done with Genesis 1.3

Eduard Prat
FEL Beam Dynamics Meeting
24 of November of 2008, Hamburg
SASE dependence on electron trajectory Measurements

Measurements are averaged over 100 shots
SASE energy taken by MCP detector (maximum around 20 µJ)

- FWHM: 100-105 µrad (x) / 90 µrad (y)
 (x>y because e⁻ wiggling motion in the undulator is in x?)
- Good reproducibility between different days

day1: 450MeV
day2: 495MeV
SASE dependence on electron trajectory
Simulations vs measurements

Idea: finding a “reasonable” input e- beam for
Genesis with an orbit sensitivity as in reality.

SASE simulations
Bunch length = 100e-4m
Gaussian current profile (I_{max}=1.5 KA)
Energy chirp of ±1%
Rest of conditions constant along the bunch:
ε_u=2.2 μm, matched optics

Steady state simulations (SS): 1 single λ
Time-dependent: bandwidth

Good agreement
SASE energy vs electron energy Measurements

Energy change by varying ACC456 gradient Measurements averaged over 100 points

<table>
<thead>
<tr>
<th></th>
<th>dx</th>
<th>dy</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial case</td>
<td>22mm</td>
<td>30mm</td>
</tr>
<tr>
<td>extra dx</td>
<td>48mm</td>
<td>28mm</td>
</tr>
<tr>
<td>dx corrected</td>
<td>12mm</td>
<td>31mm</td>
</tr>
<tr>
<td>dx/dy corrected</td>
<td>11mm</td>
<td>5mm</td>
</tr>
</tbody>
</table>

FWHM goes from 0.82 to 1.72% after correcting dispersion in both planes 😊
Considered effects:

- Orbit changes according to dispersion functions
- Optics changes (magnets were not scaled)

From the dispersion measurement, the dispersion functions at the entrance of the undulator can be derived:

\[D(s) = D(s_0)R_{11}(s) + D'(s_0)R_{12}(s) \]

<table>
<thead>
<tr>
<th></th>
<th>Initial situation</th>
<th>After correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dx)</td>
<td>12 mm</td>
<td>14 mm</td>
</tr>
<tr>
<td>(dx')</td>
<td>6.0 mrad</td>
<td>1.9 mrad</td>
</tr>
<tr>
<td>(dy)</td>
<td>47 mm</td>
<td>5 mm</td>
</tr>
<tr>
<td>(dy')</td>
<td>-2.9 mrad</td>
<td>0.4 mrad</td>
</tr>
</tbody>
</table>

No dispersion generated inside the undulator

Same beam conditions as before

Eduard Prat, DESY
SASE energy vs electron energy
Simulations vs measurements

Good agreement
SASE spectrum vs dispersion Measurements

- Every measurement averaged over 200 shots
- Dispersion generated by varying QECOL current
- Centroid orbit along the undulator kept constant

Widest spectrum and maximum power without dispersion

Effects depend on the dispersion sign

(\text{QECOL}) \rightarrow (\text{\lambda})

(but not symmetrically):

(\text{QECOL}) \rightarrow (\text{\lambda})
Dispersion generated when changing Q3/5ECOL current

Decrease of 0.5 A decrease
(0.6% of the current)

Rms dispersion in the undulator: 15 mm

Dispersion functions at the undulator entrance

<table>
<thead>
<tr>
<th></th>
<th>dx</th>
<th>dx'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.7 mm</td>
<td>4.7 mrad</td>
</tr>
</tbody>
</table>

⇒ No dispersion generated inside the undulator
Effect of the dispersion to SASE spectrum depends on the initial correlation between transverse coordinates and energy. In general we have the following relation:

\[u = u_0 + \eta_u \cdot \frac{\Delta p}{p} + \tau_u \cdot \frac{\Delta p^2}{p} + \cdots \]

\[u' = u'_0 + \eta'_u \cdot \frac{\Delta p}{p} + \tau'_u \cdot \frac{\Delta p^2}{p} + \cdots \]

Introducing dispersion changing Q3/5ECOL current, a linear component \(\eta_u \) is added.

SASE simulations

Analysis restricted to horizontal offset \(x \) and the impact of \(\Delta x \)
Considered dispersions: [0 +5cm -5cm]

Similar beam conditions as before
Bunch length increased to 300e-4m
Current increased for the head and the tail
SASE spectrum vs dispersion Simulations

No initial correlation x-energy / no off-set

- The spectrum becomes narrower
- Central wavelength does not change
SASE spectrum vs dispersion
Simulations

No correlation x-energy / non-zero off-set (+250 μm)

◮ Central wavelength depends on the dispersion sign
SASE spectrum vs dispersion Simulations

Initial linear correlation x-energy

- Effect to the spectrum width depends on the final correlation (can be narrower or wider)
- Central wavelength does not change
SASE spectrum vs dispersion Simulations

Initial quadratic correlation x-energy

➢ The spectrum becomes narrower
➢ Central wavelength depends on the dispersion sign
SASE spectrum vs dispersion
Measurements

Linear + quadratic initial u-u'/energy correlation?
Simulations are ongoing…

FEL Beam Dynamics / 24-11-08
Eduard Prat, DESY
Summary

- Dispersion correction improves sensitivity of SASE to electron energy
- Introducing dispersion narrows the SASE spectrum and changes the central wavelength. An initial quadratic correlation u/u'-energy explains qualitatively the measurements.

Next steps

- Fully simulate SASE wavelength vs dispersion (compare required initial u-$u'/energy correlation with s2e simulations / measurements)
- Repeat the measurements: see reproducibility, try to introduce dispersion with steerers in the MATCH section instead of QECOL.