Module Issues

XFEL Linac Review
26.3.2007
R. Lange/L. Lilje

• Ongoing Tests
• Module Designs
• Future tests
Acknowledgements

• Many people have contributed to the overall design and test effort
• Thanks for transperencies to A. Bertolini, D. Kostin, A. Bosotti, R. Paparella, K. Jensch
Tests

• M6 on CMTB

• TTF type 3 module
• Heat load static (expected value)
 – 40 /80 K: 80 Watt +/- 5 (75 Watt)
 – 4 K: 13 Watt +/- 2 (13 Watt)
 – 2 K: 3.5 Watt +/- 1.5 (2.8 Watt)
 – Note: 2 Endcaps lead to higher loss!
• No leaks occurred in 11 thermal cycles
• RF performance
 – Coupler processing very smooth
 – 2 cavities degraded
• Piezo tests
• Alignment over thermal cycles
• Vibration measurements
 – More data will be in the talk by H. Brueck
• (LLRF tests)
CMTB Module 6 during 11th cool down
Status: 06-March-07

R. Lange
• First set of couplers were processed with very tight interlock thresholds
• For the second set interlock thresholds were relaxed
• Their conditioning times comparable to recent CHECHIA experiences
Second Set of Couplers

Input RF couplers 3, 4, 7, 8
warm conditioning

Setting of the higher IGP (pumping speed 60 l/s)
vacuum pressure interlock limit (7V: 10^-6 mbar) as well
as conditioning the couplers at higher pressure (like at
horizontal cavity cryostat test stand: 1.3x10^-7 mbar)
allows for shorter couplers conditioning time.

The IGP IL limit was initially set to 5V: 7x10^-8 mbar,
at Horizontal test stand it is set to 7.5V: 2x10^-6 mbar.
Horizontal test stand conditioning:

- **B**: baked @150°C (all others - not baked)
- **OA**: warm part opened to air for 24 hr, not baked @150°C

Better handling (N₂ cabinet and caps)

Lutz Lilje DESY -MPY- 28.03.2007
CMTB M6
rf operation with spec. power distribution
Status 9-March-07 RLange

MV/m

27.73 average
23.5 average
18.38 average
BMTB M6 limits

cavity no

1 2 3 4 5 6 7 8

Lutz Lilje DESY -MPY- 28.03.2007
Module 6 CMTB
Meas. Qo/Eacc average gradient 10Hz 500/800us
Status: 13-Mar-07 Esch/Kos/Lil/Lan MKS

R. Lange
Lorentz Force Detunings in Module 6

Detuning over Flat-Top [Hz]

C1
C2
C3
C4
C5
C6
C7
C8

E_{acc}[MV/m]

0 5 10 15 20 25 30 35 40

Lutz Lilje DESY -MPY- 28.03.2007
Compensated Detuning per Cavity

Maximum Lorentz Force detuning compensation results

- Cav 1 - 35 MV/m
- Cav 2 - 31 MV/m
- Cav 3 - 35 MV/m
- Cav 4 - 33 MV/m
- Cav 6 - 20 MV/m
- Cav 7 - 30 MV/m
- Cav 8 - 23 MV/m

Detuning over the flat-top [Hz]

Piezo OFF
Piezo ON
Voltage on Piezo Needed for Compensation

Compensated Detuning vs. Applied Piezo Voltage
half-sine pulse, 2.5 ms width and 0.6 to 0.64 ms advance from RF pulse

- Piezo Voltages within margin
 - maximum PI piezo voltage of 120 V at room temperature
 - Could also use bipolar operation, but not needed

Lutz Lilje DESY -MPY- 28.03.2007
Compensated Detuning vs. Delay to RF@25 MV/m

Normalized detuning over the flat-top for vs. piezo pulse delay

Normalized amplitude vs. Piezo pulse start time [ms]

- Delay analysis on cavity 1
- Delay analysis on cavity 2
- Delay analysis on cavity 6
- Delay analysis on cavity 7
- 2nd osc. compensation

Lutz Lilje DESY -MPY-
Pre-Detuning Change Due to Piezo Pulse Delay when using the ‘second oscillation’

- Can change the cavity pre-detuning of the cavity by changing the Piezo delay to use the ‘second oscillation’ in the order of 200Hz
 - Less motor usage, increase lifetime
 - Correponds to He drifts of a few mbar
Operation of Full module – Vector-Sum

Vector Sum of Module 6 with and without piezo active compensation
RF feedback ON, same control-loop-gain setting

Amplitude [A.U.]

Phase [deg]

Piezo compensation OFF
Piezo compensation ON

Lutz Lilje DESY -MPY- 28.03.2007
Detuning of all cavities of Module 6 with and without piezo active compensation

Cavity 1,2,3,4: signal 1 - half sin 2.5 ms width, 60 V, 640 us advance

Cavity 5,6: no signal - no active compensation

Cavity 7,8: signal 2 - half sin 2.5 ms width, 64 V, 640 us advance
Operation of Full Module – Forward Power

RF feedback switched ON on module 6 in CMTB. Collection of all amplitude of forward power signals with and without piezo active compensation

Piezo compensation OFF
Piezo compensation ON
Cooldown and Warmup data for different cycles: Horizontal Displacements (only stable T points considered)
Cooldown and Warmup data for different cycles:
Vertical Displacements (only stable T points considered)

A. Bosotti

Lutz Lilje DESY -MPY-
Longitudinal Position: Xray of Coupler Antenna (C7)
(Ansicht Y-Achse)

Beam direction

K. Jensch
Quadrupole vibrations – Cryomodule warm III

RMS analysis

In the low frequency band the quadrupole motion tracks the ground vibration level. Slight amplitude differences are related mainly to the mechanical transfer function of the module on its support system. Non perfect equalization of the sensor response can also affect the accuracy. Quad RMS overestimated because of the low resonant frequency (4.14 Hz) of this geophone at room temperature.

Module 6 on CMTB - 05 March 2007 - Warm

Vertical RMS amplitude (nm)

- vtop 1-30 Hz
- quad 1-30 Hz
- quad 30-100 Hz
- floor 1-30 Hz
- floor 30-100 Hz

Time

08 AM 09 AM 10 AM 12 PM 01 PM

A. Bertolini
Quadrupole vibrations – Cold steady state – no RF

RMS analysis

Ground motion tracking confirmed at low frequencies, with ~10% quad/gnd and top/gnd rms ratios. Large vibration amplitude at high frequency from the CMTB cryogenic plant. The refrigeration system doesn’t affect the quadrupole stability at low frequency (f<30 Hz). High frequency noise to be checked after the solution of CMTB cryoplant problems.

Module 6 on CMTB - 08 March 2007 - 2°C / no RF

A. Bertolini
Conclusions

Geophone test at 4K

- classic 4.5 Hz industrial geophone can operate at 4K without any loss of sensitivity
- in-situ high accuracy calibration procedure demonstrated
- a new tool for low frequency vibration investigations at cryogenic temperatures

Quadrupole vibration measurements at 4 K

- low frequency (1-100 Hz) quadrupole vertical stability is not affected by high gradient RF operation

- quadrupole vertical stability is not affected by the refrigeration system at frequencies up to 30 Hz; results not conclusive at higher frequency because of the present limitations of the CMTB cryo plant.

- needed comparison with operation in the FLASH linac. Can we keep the geophones aboard Module 6?

- the results will be cross-checked with laser interferometry on Module 8 at the end of the year.
Design

• **TTF type III+ design and manufacturing done (M8 and M9)**
 – Mechanical design is based on TTF Type III modules (M4, M5, M6)
 • **Minor differences**
 – Quad longitudinal fixation
 » Like cavities
 – Other Quad/BPM type differences
 » 2K
 » E.g. other current leads
 – Correct lambda distance between cavities
 – allows to put HOM absorber between modules
 – Most of XFEL prototype features will be tested
 – Active industrial participation in module assembly

• **XFEL Prototype status**
 – As above, but…
 • Shorter overall cryostat ~200 mm
 • Shield tubing enlarged
 • 2-Phase line under investigation,
 – max. 89mm outer diameter possible without major design changes
 – Cryostat order will be placed now
 • Qualification of cryostat vendors
Module Type III+
(overview)

3D-JT-File complete cryo module under EDMS*750581

02-Nov-2006

Lutz Lilje DESY -MPY-
K. Jensch
XFEL-Cryomodule
(overview)

3D-JT-File cavity string under EDMS**752701

02-Nov-2006

K. Jensch
TypeIII+ Cryomodule end section

ΔL XFEL/FLASH string

02-Nov-2006

K. Jensch
XFEL-Cryomodule end section
Future Tests

- **Destructive test** on M3*
- **More vibration measurements**
 - M7
 - Parallel accelerometer and geophone measurements
 - Continuous measurements
 - M8
 - Laser interferometry on quad
 - FLASH
 - Accelerometers (all modules) and geophones (in M6/ACC6) will be monitored continuously
- Test on longitudinal positioning of Quad/BPM package
 - On M8/(M9)
- More detailed tests on piezo tuning system
 - Reversed cavity pre-tuning needs full demonstration
- Further LLRF tests
Conclusion

• **CMTB** has proven to be *essential tool* for thorough linac-independent tests of modules

• **M6** has passed *several important tests*
 – Coupler processing
 – Alignment over several thermal cycles
 – Piezo compensation

• Nonetheless some *issues remain*
 – Cavity performance degradation
 – Vibration needs more understanding (~30 Hz peak)

• **Minor evolutions** in design will be tested on **M8**
 – Important *step toward a XFEL prototype test*