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Lattice Constraints Used for the Optics Design
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Bunch compressors: special beta functions reduce emittance| ——— 18° [ 3.8°
growth due to coherent synchrotron radiation (CSR)

Bunch compressor angles proposed
~—_ for the start of the commissioning

Diagnostic sections: FODO lattice with periodic
Collimator: the selection of optical Twiss functions (DBC2 and SEED sections)
functions in the dogleg of this section

are almost completely determined
by the need fo suppress dispersion
and to shape a beam envelop suitable

Dump: beam spot size should be not
smaller than the safety limit

for collimation purposes

Undulator: the quadrupole strength has fo be
optimized to provide good FEL performance
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Bypass: this line starts with a section which is tilted with respect to the principal linac planes




Two Options Developed for the FLASH Linac Optics

TTE2 LIST 20.01.2004 by Nina TTF2 LIST 20.01.2004 by Nina
100. U’”EWW"S"””S' ———— el LR 100, Unixversion851/13 _~ 300704 _15.19.10
90. 1 ' . . o 90, | P B
1 All lattice constraints are satisfied. . : L . .
80. - 80. | This optics makes the maximal beta functions
1 ' 5 smaller, but does not provide the special
70. ] 70. - behavior of the beta functions in the bunch
60. 60. 1 compressor BC3 and moderately changes the
0. 1 : beta functions through the collimator section.
50. 1 50. 4
40.
30.
20.
10.
0.0 o e W VN
250. 0.0 50. 100. 150. 200. 250.
Optics Option 1 Optics Option 2

Sensitivity to individual quadrupole errors: relative errors in k-values

Option 1
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If one exclude this quadrupole (Q11DBC2), the sum of individual
quadrupole sensitivities is almost two times smaller for Option 2

Roughly speaking, these errors are proportional to the product of the quadrupole k-value and of the betatron function at the quadrupole location
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Why Second Optics Option was Developed?

The operations of the FLASH facility started with many important
components missing (in particular, without 3 harmonic accelerating section,
without electronics for the part of the beam position monitors and etc.).

In these conditions the only possible operational mode is the femtosecond
mode with creation of a short high-current leading peak (spike) in the bunch
density distribution.

Due to strong collective effects the parameters of the spike could be
quite different from the parameters of the rest of the bunch. As most of
the available diagnostics tools (wire scanners, OTR screens, beam position
monitors) are only able to determine integral properties of the total bunch,
it is thus almost impossible to control the orbit and the optics match of the
lasing spike.

So it looks useful to have an optics solution as much insensitive as
possible to uncertainties in the knowledge of the beam energy, to magnet

setting errors and to at least some of collective effects.



Why not a whole set of optics, but exactly
two optics were suggested?

It is a result of extensive studies which led us to the conclusion which,
very roughly speaking, can be formulated as follows:

If one will keep the 45° FODO lattice with periodic Twiss functions
in the DBC2 section™, then all reasonable optics for the FLASH
linac operations could be divided into two classes. Optics within

each class demonstrate similar properties, and there is
“no continuous transition” between these two classes. So we have
chosen one “good representative” (representative, which satisfies
some additional optimality constraints) from each class and
obtained two different optics.

* In the beginning of facility commissioning the ability to have (constantly, during operations) good conditions for
measurement of the parameters of the beam coming from injector (i.e. 45° FODO with periodic Twiss functions in
the DBC2 section) was considered as having primary importance with respect to the possibility of reduction of
optics sensitivity. Now the point of view on this subject did change, and the possible optics improvements will be
discussed later during this talk.



An example which illustrates this "two class separation”

—
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The transition from DBC2 diagnostic section into
accelerating module ACC2. Scan over all possible
strengths of 3 quadrupoles downstream of DBC2
FODO (Q10.3DBC2, Q11DBC2, Q12DBC2).
Each point corresponds to different
qudrupole settings (i.e. to different optics).

Opties 2| T

The absence of continuous transition between J
two optics means that moving along this curve —
we only loosing in sensitivity, and move along
that curve is not possible.

max ([k1], k2], [k3[) (1/m*"2)
L T & TR % TR < o O =+ T I = = I = TR o |

10| 20 30 40 50 60 70 80 90 100

=

max (betax, betay) 14| Opties 2| -@M
Approximate behaviour of level surfaces of .
“sensitivity function” (sensitivity to relative errors) E 1
2
E 0.8
3 08
k=
E 04
One more example: at the reducing of —> 0.0 / ;
max( Bx, By ) (inside accelerating modules ACC2 ' : “n_L. G i e S
and ACC3) there is a sudden jump in the maximum 0 , , T , . s A ]
of min( Bx, By). 0 10 20 30 40 50 B0 70 B0 G0 100

max (betax, betay)




Transverse Space Charge Effects
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Transverse Space Charge Effects
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< Calculation region

Remark: calculations presented in this talk were made with the MAD program (betatron functions)
and TrackFMN code (V.Balandin, N.Golubeva: 1993-2006) (nonlinear tracking, transverse space charge
effects, sensitivities, Taylor maps).




Transverse Space Charge Effects
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Transverse Space Charge Effects:
Optics Difference in the Calculation Region
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2 RF Radial Focusing: The transport matrices

1 o corresponding to the passage through an RF
- g . cavity were calculated using the knowledge of
. _*;_ on-axis accelerating field profile and beam

A - injection phase and energy. This focusing is not

2 of principal importance, but the change in

et 100 ettt quadrqpole settings fqr _rgcover_ing optical
Length () Lenath (m) functions calculated initially without RF
Accelerating field amplitude and its first derivative focusing is up to 15%.
along the axis of the TESLA cavity (arbitrary units)
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Undulator Section of the FLASH Facility
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was used for the calculations
of natural undulator focusing.
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Effect of natural focusing on periodic beam transport:

stability regions for undulator cell
(inside stability region the difference |ux - wy| is shown)
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Undulator cell is a periodic unit of undulator system and contains
one undulator segment followed by two quadrupoles
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Effect of natural focusing on periodic
betatron functions and phase advances
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Average Beam Spot Size inside Undulator Segment as Criterion
for Choosing the Working point for Quadrupoles.
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Different Variants for Beam Optics in the Undulator
Section (445 MeV)
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Usage of Different Optics in Real Operations

Because Twiss parameters and orbit of the lasing spike are, in
general, unknown, as usage of different optics in real operations
we will understand the following procedure: setting of theoretical
quadrupole currents corresponding to chosen optics solution
with following empirical tuning during SASE search.

The final difference between actual and theoretical quadrupole
settings depends on operator experience and his wish to do (or
not) certain changes.

Nevertheless, several times SASE was obtained (and improved)
practically without touching theoretical quadrupole settings (even
without matching in the DBC2 section), especially in the
beginning of the work with optics option 2 (see examples from
FLASH eLogBook shown at this page).
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4.05.06, SASE: 25.5 nm, 14 uJ peak, 5 uJ average.

After one day

en); cak for design enargy (biee); calculated for estimated enargy (red)

-1686
372
55,6
744
83

Power supply currents: designed for design energy {green); ‘1P“I[|I|€\'! or estimaled ensesgy (Déue); actual (red)
ACCH BC2 ACC2 ACC3 BC3 ACC4 ACCS
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Usage of Different Optics in Real Operations

* Commissioning started (September 2004) with
quadrupole settings corresponding to Optics Option 1
in accelerator and with focusing Variant 1 for the
undulator section.

* After empirical tuning (mainly in ACC4/ACC5 area and in
the front of the undulator) the beam was transported to
the undulator entrance (in November 2004).

* Without automatic procedure for alignment of undulator
quadrupoles, it was difficult to get the beam through the
undulator with large kicks due to offsets of strong
quadrupoles in optics Variant 1. So focusing was reduced
to Variant 7.

* First beam through the undulator was obtained
with Variant 7 in the middle of December 2004.
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Usage of Different Optics in Real Operations

* Losses in the undulator were still too high to allow
systematic SASE search and one of the reasons for
that were large orbit kicks due to quadrupole
offsets. So focusing was further reduced to the
Variant FOFO and the FIRST LASING was obtained
in the middle of January 2005 (~32nm).

* With increased experience of operators and with
empirical alignment of undulator quadrupoles,
focusing in undulator section was made stronger
and the last operational variant for the undulator
optics (before current shutdown) was Variant 4.

* On 21 April 2006 the optics of the accelerator was
switched to Optics Option 2 with undulator Variant 4.
The optics change was done within one shift and the
FIRST LASING at ~13nm was obtained already during

the first shift dedicated to SASE search (26 April 2006).
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Why Usage of Optics 2 was more Successful ?

M Of course, the increased experience of people since start of the facility operations
played very important (and some times, probably, even dominant) role.

M Magnet setting corresponding to the Optics 1, probably, never was correctly
established (shortcuts, wrong polarities, correct information about some magnets

missing, ...).

M Since start of operations and before switching to Optics 2, a lot of information
about magnets was collected and analyzed, and, as a result, the beam dynamical model

of the FLASH linac was essentially improved.

M Nevertheless, it seems that concept of sensitivity reduction was very useful and
additional steps in this direction could also be helpful.

Effective Parameters of Quadrupole Magnets in FLASH e
Measurements 2
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Shutdown 2007

EXCHANGE OF ACCELERATING MODULE ACC3

OPTICAL
REPLICA INFRARED
UNDULATOR

INCREASED DISTANCE FROM NEW MODULE: ACC6
RF-GUN TO Accl l

ﬁ . ‘ ) St@ring Magnets and}om)ctuon Coils l )
: —H —HH E L E ) e
- - L] - - -e - - - - - L - .Beam po;itiar‘ M.Dnitorsl (AR LR RN RLE RLERLE NLN ) .T - -
INTERCHANGE OF POSITIONS INCREASED APERTURES
OF 2 QUADRUPOLES OF 2 QUADRUPOLES

There is no problem to adapt optics 2 to updated accelerator structure.
Automatic procedure (which will allow to calculate needed currents for
magnet power supplies as a function of accelerating regime and desired

bunch compressor angles) is under development and will be included
in Optics Toolbox version 1.3.

But it seems that there are some possibilities for further improvement of
optics 2 (optics 2+), which we would like to discuss .
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Transition into ACC2 accelerating module:
What can be improved in Optics 2 ?
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main source of troubles while s - S LT
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20 1 without large increase in 20. 1
151 sensitivity to quadrupole errors, 151
101 the result (with necessity) will 0 | —
3. .. .
o be similar to the optics 1.—
00 30 100 150 200 s oS0 160 130 260 2

Possible solutions: usage of non periodic Twiss functions or/and reduction of
the focusing strengths of quadrupoles Q4DBC2-Q10DBC2 (powered in series).
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Transition into ACC2 accelerating module

FLASH opms Option 2, ,"7()4 2007
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B Original solution of the optics option 2 (S0).

E®» Non-periodic Twiss functions in the DBC2
section, but setting of quadrupoles
Q4DBC2-Q10DBC2 still corresponds to

45° phase advances (S1).

E®» Non-periodic Twiss functions and
setting of Q4DBC2-Q10DBC2 quadrupoles
corresponding to 30° phase advances (S2)
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Transition into ACC2 accelerating module:
growth of emittances due to chromatic effects
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Matched gaussian beam at the exit of BC2 with normalized emittances 1 mm-mrad and 1% rms energy spread.
Tracking up to ACC3 exit. No magnet misalignments and quadrupole gradient errors.

— peam with nominal energy, +2% coherent energy shift, —— -2% coherent energy shift.
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Transition intfo ACC2 accelerating module:
transverse space charge effect

80

S0

70

&G0 +
£50
= 40 |
]

830

b
.
F

0 5 10 15

20
z[m]

25

30

35

40

.51 T

0 5 10

15 20
z[m]

25 30 35 40

15 20
z[m]

25 30 35 40

80

52

70

60 |
—50
= 40
L)
B30f

80

i5 20 25
z[m]

30

35 40

70

60 -
E 50
140
©

EBD-

Monochromatic matched
gaussian beam at the exit
of BC2 with normalized
emittances 1 mm-mrad.

1=400 A.

114 +
112 +
11}
S1.08
>

@

clma-
s 104t
1.02 +

0.98
0




Transition into ACC2 accelerating module:
beam steering due to manipulations with
beam energy in RF-Gun and ACC1 module

X

Tersiun 14 Tersiun 14 Tersiun 1.4

_gﬂpx o 1PX - 1PX

SO || |5 S1 | |5 S2
S

X

00012 00004 00004 00012

-0.0:012

00004 00004 00012

-0.0:012

10.0004

0.0004

0.0012

Monochromatic 20 ellipses with
-2%, 0, +2% energy offsets at the
BC2 exit. Coherent deflection
angle in the horizontal plane is
set to 0.3 mrad (the resulting
trajectory offsets nowhere

exceeds the value of about 1 mm).

It seems that switch from optics solution SO to optics solution S2
could be beneficial.

26



Matching to the undulator entrance

Steering Magnets and Correction Coils
e @ e 8 - - - -

id

r}mﬂ—ﬁ%ﬂﬁm}umwmlum—l—:ﬂ—*f - :
Mﬂﬂ—l—l—!—i—i—l—i—!—l—l—l—l—ﬂ‘ g —— W
Beam Position Monitors
21SEED
Four usual steerers + 4 aircore steerers (not shown here) O

Pe—

Q20SEED

= V3SEED
= \V12SEED
V19SEED

H12SEED =
14SEED
H19SEED

O———— @D Q3SEED
H3SEED m
5SEED
@D o7seED
o——<&=» Q12SEED
al

3SEED 12SEED 20SEED 21SEED

Two quadrupoles at the undulator entrance (Q21SEED and Q22SEED) do not
contribute significantly into matching to the undulator unless their strengths
are high (which could produce strong kicks due to offsets of these quadrupoles
with respect to the beam). Of course, these quadrupoles could be used as
additional steerers, but it looks better to use “real” steerers
(four pairs of which are placed in the front of undulator entrance).

So it looks beneficial to degauss these two quadrupoles and switch them
off without any serious reduction of the matching flexibility (especially,
if quadrupoles in the seeding line will have separate power supplies).
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Focusing inside the undulator

In perfect situation (ideally aligned quadrupoles and perfect matching) a stronger
focusing inside the undulator is, of course, beneficial. Without automatic procedure
for quadrupole alignment and with unknown Twiss parameters of the lasing spike the
efficiency of the focusing increase is limited by success of empirical tuning. The current focusing
variant is V4. Nevertheless, small increase in the quadrupole focusing strengths could be beneficial,
especially if one will simply rescale the quadrupole settings with changing beam energy, as it
sometimes was done before (without natural undulator focusing taken into account).
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Some remarks about bypass operations
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FLASH optics: Option 2, 17.04.2007
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ACCORDING TO ORIGINAL DESIGN (G. HOFFSTAETTER)
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USED FOR THE COUPLING REMOVAL (NO FREEDOM IS LEFT).
TO FOCUS BEAM AT THE LOCATION OF THE MATERIAL TEST
FACILITY THE USAGE OF QUADRUPOLE DOUBLET (Q36BYP,
Q37BYP) ALONE IS INSUFFICIENT. ADDITIONALLY, THE SPECIAL
INITIAL CONDITIONS AT THE BYPASS ENTRANCE HAVE TO BE
CREATED. THIS MEANS THE USAGE OF LINAC QUADRUPOLES
STARTING, AT LEAST, FROM ACC6 DOUBLET. THE BETTER
APROACH COULD BE TO WORK WITH COUPLED BEAM, THAT
ALLOWS TO USE QUADRUPOLES Q16/17/18BYP NOT FOR THE
COUPLING REMOVING BUT FOR MANIPULATIONS WITH BEAM
AND COULD ALLOW TO KEEP SETTING OF LINAC QUADRUPOLES
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MatLab Based Online Toolbox for FLASH Optics

Matlab Functions for Calenlations of the
Linear Beam Optics of FLASH Linac

Version 1.2

V.Balandin and N.Golubeva

December 11, 2006

(6 +2)D motion is implemented, including
rf-focusing (based on usage of on-axis accelerating
field profile) and natural undulator focusing (based
on usage of measured undulator field).

+2)D means dynamics of reference energy and
reference time of flight (although time of flight is not
In usage yet).

Version 1.0 — July 28, 2006
Version 1.1 — October 20, 2006
Version 1.2 — December 11, 2006
Version 1.3 — coming soon

Manual (110 pages for current version)
in FLASH-eLogBook: doc/Physics/Optics
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MatLab Based Online Toolbox for FLASH Optics
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Horizontal beam size [rms, microns] for normalized emittance 2,24 mm*mrad
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Calculations of theoretical beam sizes

and their comparison with measured data
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Vertical beam size [rms, microns] for normalized emittance 2.28 mm*mrad
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Summary

@® There is no problem to adapt optics 2 to updated accelerator structure

® Automatic procedure (which will allow to calculate needed currents for
magnet power supplies as a function of accelerating regime and desired
bunch compressor angles) is under development and will be included
in Optics Toolbox

® It seems that there are some possibilities for further improvement of
the optics option 2

® Version 1.3 of Optics Toolbox will be ready in 2-3 weeks
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