a numerical investigation:
emittance growth by rf coupler kicks

Philippe Piot’s results (PAC 2005)

mechanisms for emittance growth

model for one coupler (= round beam + discrete kick)

ASTRA calculation for ACC1

mechanisms for emittance growth – 2nd

ASTRA calculation for ACC2

conclusions, questions

remarks:

XFEL case
ideal operation conditions for ACC1 (on crest, steady state, no reflected power)
STEERING AND FOCUSING EFFECTS IN TESLA CAVITY DUE TO HIGH ORDER MODE AND INPUT COUPLERS

P. Piot, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA, M. Dohls, K. Flöttemann, M. Marx, S.G. Wipf, Deutches Elektronen Synchrotron DESY, Hamburg, D-22603 Germany.

IMPACT ON THE XFEL PHOTINOJECTOR

We present a practical example of the coupler-effects on the beam dynamics by considering the x-ray FEL photoinjector [5]. In the injector, the electron beam is photoinjected in an L-band (f = 1.3 GHz) rf-gun and directly injected into a standard TESLA-type accelerating module composed of eight cavities and accelerated to ~190 MeV. The first two cavities of the accelerating module are operated with $E_x = 23$ MV/m and the remaining six cavities with $E_x = 50$ MV/m. Figure 7 compares the beam parameter evolutions along the injector beamline from the photocathode surface ($z = 0$) up to the end of the first accelerating module. The field disturbances caused by the coupler result in a 16% and 1% relative emittance growth respectively in the horizontal and vertical plane. The induced steering results in beam displacements at the accelerating module exit of $|\delta x| = 680 \ \mu m$ and $|\delta y| = 170 \ \mu m$, and no significant $x-y$ coupling is observed.

Figure 7: Simulated normalized transverse (top plot) beam position (middle plot) and beam rms sizes (bottom plot) evolution along the x-ray FEL photoinjector with (solid line) and without (dashed line) including the coupler effects. red: vertical plane; blue: horizontal plane. The linac phase is chosen for maximum energy gain. The green curves represents the axial electric field in the cavity in arbitrary units.
mechanisms for emittance growth

projected emittance:
 different centroid shift for different slices
 different optics for different slices
 mechanisms for growth of slice emittance

slice emittance:
 x-y coupling
 (non linearity)
slice emittance, x-y coupling

correlation matrix of round non-magnetized beam:
(no angular momentum)

\[
S = \begin{bmatrix}
\beta & -\alpha & 0 & 0 \\
-\alpha & \gamma & 0 & 0 \\
0 & 0 & \beta & -\alpha \\
0 & 0 & -\alpha & \gamma \\
\end{bmatrix}
\]

with \(\gamma = \frac{1 + \alpha^2}{\beta} \)
\(\rightarrow \det\left(\frac{1}{\varepsilon} S \right) = 1 \)

\[
\psi(x) = \frac{1}{(2\pi\varepsilon)^2} \exp\left(-\frac{1}{2} x^T S^{-1} x \right)
\]

horizontal & vertical emittance:
\(\varepsilon_x(S) = \sqrt{s_{11} s_{12}} \rightarrow \varepsilon_x = \varepsilon \)
\(\varepsilon_y(S) = \sqrt{s_{33} s_{34}} \rightarrow \varepsilon_y = \varepsilon \)

symplectic kick matrix:
(discrete kick)

\[
T = \begin{bmatrix}
1 & 0 & 0 & 0 \\
u & 1 & u & 0 \\
0 & 0 & 1 & 0 \\
u & 0 & w & 1 \\
\end{bmatrix}
\]

emittance after kick:
\(\varepsilon_x(TST^t) = \varepsilon_y(TST^t) = \varepsilon \sqrt{1 + (u\beta)^2} \)
(discrete) model for one coupler

\[V_x e_x + V_y e_y + V_z e_z = \int \left(E^{(\text{mode})} + v \times B^{(\text{mode})} \right) \exp \left(i \frac{\omega}{c} z \right) dz \]

kick matrix (on crest):

\[T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ v & 1 & u & 0 \\ 0 & 0 & 1 & 0 \\ u & 0 & w & 1 \end{bmatrix} \]

\[u = \frac{V^{(\text{cavity})}}{V^{(\text{beam})}} \Re \left\{ \frac{\partial V_x / \partial y}{V_z} \right\} = \frac{V^{(\text{cavity})}}{V^{(\text{beam})}} \Re \left\{ \frac{\partial V_y / \partial x}{V_z} \right\} \]

\[v = \frac{V^{(\text{cavity})}}{V^{(\text{beam})}} \Re \left\{ \frac{\partial V_x / \partial x}{V_z} \right\} \]

\[w = \frac{V^{(\text{cavity})}}{V^{(\text{beam})}} \Re \left\{ \frac{\partial V_y / \partial y}{V_z} \right\} \]

typical numbers for 1st coupler (=upstream, cavity 1)

\[V^{(\text{beam})} \approx 6.8 \text{ MV} \]
\[V^{(\text{cavity})} \approx 12 \text{ MV} \]

\[T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1.89 \times 10^{-3} & 1 & 5.928 \times 10^{-3} & 0 \\ 0 & 0 & 1 & 0 \\ 5.928 \times 10^{-3} & 0 & -1.741 \times 10^{-3} & 1 \end{bmatrix} \]

unit of off-diagonal elements: 1/m

relative emittance growth:

\[\beta \approx 3 \text{ m} \]
\[\sqrt{1 + (u\beta)^2} \approx 1.00017 \]

upstream coupler, cavity 5:

\[V^{(\text{beam})} \approx 62 \text{ MV} \]
\[V^{(\text{cavity})} \approx 18 \text{ MV} \]

\[u \approx 0.001/\text{m} \]
\[\beta \approx 30 \text{ m} \]
\[\sqrt{1 + (u\beta)^2} \approx 1.00045 \]
ASTRA calculation for ACC1

Projected emittance

\[\frac{\varepsilon_{p,x}}{\varepsilon_{p,\text{no coupler}}} \approx 1.11 \]
\[\frac{\varepsilon_{p,y}}{\varepsilon_{p,\text{no coupler}}} \approx 1.051 \]

Slice emittance (center 10% charge)

\[\frac{\varepsilon_{s,x}}{\varepsilon_{s,\text{no coupler}}} \approx 1.028 \]
\[\frac{\varepsilon_{s,y}}{\varepsilon_{s,\text{no coupler}}} \approx 1.021 \]

\[\gamma \varepsilon_{p, \text{no coupler}} \approx 0.913 \mu m \]
\[\gamma \varepsilon_{s, \text{no coupler}} \approx 0.666 \mu m \]
mechanisms for emittance growth – 2nd
offset independent fields

\[\mathbf{E}(x, y, z) := \mathbf{E}(0,0, z) \]

\[\mathbf{B}(x, y, z) := \mathbf{B}(0,0, z) \]

- **Projected Emittance**
 - \(\varepsilon_{p,x} \approx 1.055 \)
 - \(\varepsilon_{p,y} \approx 1.00 \)

- **Slice Emittance (center 10% charge)**
 - \(\varepsilon_{s,x} \approx 1.00 \)
 - \(\varepsilon_{s,y} \approx 1.00 \)
mechanisms for emittance growth – 2nd
zero field at center

\[E(x, y, z) := E(x, y, z) - E(0, 0, z) \]

\[B(x, y, z) := B(x, y, z) - B(0, 0, z) \]

projected emittance

\[\frac{E_{p,x}}{E_{p, no coupler}} \approx 1.057 \quad \frac{E_{p,y}}{E_{p, no coupler}} \approx 1.051 \]

slice emittance (center 10% charge)

\[\frac{E_{s,x}}{E_{s, no coupler}} \approx 1.028 \quad \frac{E_{s,y}}{E_{s, no coupler}} \approx 1.021 \]
mechanisms for emittance growth – 2nd

<table>
<thead>
<tr>
<th></th>
<th>projected emittance</th>
<th>projected emittance (extracted centroid shift)</th>
<th>slice emittance (center, 10% charge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>no coupler fields</td>
<td>(\varepsilon_{p, \text{no coupler}} \approx 3.64 \cdot 10^{-9} \text{ m}) (\gamma \varepsilon_{p, \text{no coupler}} \approx 0.913 \mu\text{m})</td>
<td>(\varepsilon_{s, \text{no coupler}} \approx 2.66 \cdot 10^{-9} \text{ m}) (\gamma \varepsilon_{s, \text{no coupler}} \approx 0.666 \mu\text{m})</td>
<td></td>
</tr>
<tr>
<td>full calculation</td>
<td>(\frac{\varepsilon_p}{\varepsilon_{p, \text{no coupler}}} \approx 1.11 \text{ for x}) (\frac{\varepsilon_p}{\varepsilon_{p, \text{no coupler}}} \approx 1.051 \text{ for y})</td>
<td>(\frac{\varepsilon_s}{\varepsilon_{p, \text{no coupler}}} \approx 1.028 \text{ for x}) (\frac{\varepsilon_s}{\varepsilon_{p, \text{no coupler}}} \approx 1.021 \text{ for y})</td>
<td></td>
</tr>
<tr>
<td>offset independent fields</td>
<td>1.055 for x</td>
<td>1.057 for x</td>
<td>1.028 for x</td>
</tr>
<tr>
<td></td>
<td>1.00 for y</td>
<td>1.051 for y</td>
<td>1.021 for y</td>
</tr>
<tr>
<td>zero field at center</td>
<td>1.057 for x</td>
<td>1.057 for x</td>
<td>1.028 for x</td>
</tr>
<tr>
<td></td>
<td>1.051 for y</td>
<td>1.051 for y</td>
<td>1.021 for y</td>
</tr>
</tbody>
</table>
ASTRA calculation for ACC2
(ACC2 on crest)

Projected emittance
\[
\frac{\varepsilon_{p,x}}{\varepsilon_p, \text{no coupler}} \approx 1.162 \quad \frac{\varepsilon_{p,y}}{\varepsilon_p, \text{no coupler}} \approx 1.036
\]

Slice emittance
\[
\frac{\varepsilon_{s,x}}{\varepsilon_s, \text{no coupler}} \approx 1.026 \quad \frac{\varepsilon_{s,y}}{\varepsilon_s, \text{no coupler}} \approx 1.018
\]
conclusions, questions

similar results as Philippe

growth of horizontal emittance in ACC1: projected 11%, slice 3%

1st order effect = offset independent field (centroid shift)
\hspace{.7cm} 5.5%

2nd order effect = offset dependent field
\hspace{.7cm} 5.7%, 2.8%

horiz. emittance growth to end of ACC2: projected 16%, slice 3%

influence of working point (reflected waves, off crest)

is that all?

is it acceptable?

1st order compensation of kicks (could be) possible with compensation elements

higher order compensation is difficult (→ keep symmetries of geometry)

required: investigation for 3rd harmonic coupler