Diagnostics overview and FB for the XFEL bunch compressors

Holger Schlarb, Christopher Gerth, Michael Röhrs, …
DESY
22607 Hamburg
• proposed beam line design:

Will be discussed by Ch. Gerth in details
Diagnostics overview BC1

- proposed beam line design:

SRF 1.3 GHz SRF 3.9 GHz Bunch compressor TDS X&Y Diagnostic section SRF 1.3 GHz

Standard diagnostics:

TOR toroid system for transmission measurements (1,3&4 for interlock)
DC dark current monitors (upstream BC1, downstream BC1)
BPM beam position monitor ~ 20 (not yet determined ... every quad?)
 purpose: orbit correction, transfer measurements, dispersion correction
OTR optical transition screen (with wire scanners WS?)

12/20/2006 Holger Schlarb, DESY
• proposed beam line design:

SRF 1.3 GHz SRF 3.9 GHz Bunch compressor TDS X&Y Diagnostic section SRF 1.3GHz

Special diagnostics:

TDS \(\text{transverse deflecting structure X & Y}\)
EO \(\text{electro–optic longitudinal beam profile monitor}\)
BCM \(\text{bunch compression monitors (CSR at D4 and CDR/CTR)}\)
SR \(\text{synchrotron radiation monitor (energy and energy spread)}\)
BAM \(\text{beam arrival time monitor}\)

B Schmidt

12/20/2006 Holger Schlarb, DESY
Diagnostics overview BC1

• proposed beam line design:

SRF 1.3 GHz SRF 3.9 GHz Bunch compressor TDS X&Y Diagnostic section SRF 1.3GHz

Additional devices:

COL collimators (1st & 2nd to remove dark current, 3rd & 4th for kicked e-)
KIC fast kicker to off-axis screens (2 x and 2 y)
Align laser for optics alignment
BLM beam loss monitors (about 8-10 sufficient)

12/20/2006 Holger Schlarb, DESY
• proposed beam line design:

SRF 1.3 GHz

Bunch compressor BC2

TDS X

Diagnostic section

SRF 1.3GHz

Matching sections

Diagnostics elements

Will be discussed by Ch. Gerth in details

TDS transverse deflecting structure (only X <-dump line in Y)

ORS optical replica synthesizer

Remaining diagnostics/devices are basically the same as for BC1

12/20/2006
Holger Schlarb, DESY
Longitudinal Feedback

• most challenges for BC1

SRF 1.3 GHz SRF 3.9 GHz Bunch compressor SRF 1.3GHz

Problem: 4 regulation parameter $A_1, \varphi_1, A_3, \varphi_3$
+ τ arrival time of beam into acceleration module ($\varphi = -\omega_{rf}\tau$)

Direct measurement:
- $<\tau>$ beam arrival time τ (<30fs)
- $<dE/E>$ beam energy (after orbit correction) (<10^{-5})
- $<z^2>$ bunch length (integral pyro signal) (<0.01°)

more difficult
- $|S(\rho)|^2$ spectral content of compressed bunch
- ρ profile (limit resolution!!!)

Ideal operation point: where 2 of 4 parameter have relaxed tolerance (e.g. A_3, φ_3)

12/20/2006 Holger Schlarb, DESY
Longitudinal Feedback

- most challenges for BC1

SRF 1.3 GHz SRF 3.9 GHz Bunch compressor SRF 1.3 GHz

Problem: 4 regulation parameter A_1, ϕ_1, A_3, ϕ_3
+ τ arrival time of beam into acceleration module ($\phi = -\omega_{\text{rf}} \tau$)

Direct measurement:
- $\langle \tau \rangle$ beam arrival time τ (<30fs)
- $\langle dE/E \rangle$ beam energy (after orbit correction) (<10^{-5})
- $\langle z^2 \rangle$ bunch length (integral pyro signal) (<0.01°)

more difficult
- $|S(\rho)|^2$ spectral content of compressed bunch profile (limit resolution!!!)

Ideal operation point: but typically only 1 can be made insensitive

12/20/2006 Holger Schlarb, DESY
Next steps at FLASH

- 2007 installation of optical replica synthesizer (< 5fs resolution) in cooperation with Uppsala & Uni. Stockholm

- preparation of longitudinal feedback system (mainly new monitor systems)

- allow for laser based beam manipulation and external seeding option: requires ~ 30-60 fs rms arrival time stability

12/20/2006 Holger Schlarb, DESY
Potential upgrades

- normal conducting acceleration cavities for large bandwidth longitudinal FB
 => upstream of BC1 2 * 1 m

- fast kicker for orbit feedback at BC1 or at BC2
 => downstream chicanes 4 * 1 m

- E-SASE operation (laser launched after BC2)
 => ORS can be used (to be confirmed) Laser?

- Beam manipulation in BC1
 => requires addition space!
Laser manipulation BC1

- Most suited in bunch compressor chicane due to large R16 ~ 600mm
- Longitudinal space is mapped to spatial components (Y)
- LCLS insertion of slotted foil to increase emittance for macropulse not possible
- But laser based energy manipulation provides similar option!

- inducing energy spread
- particle migration due to R_{54} (σ_y smears out $\sigma_E(z)$)
- in BC2 the energy distribution induced 2.5 larger peak current
- requires 2m space in BC1
Beam manipulation BC1
- simple simulation -

Laser off

Single gap

Two gaps $\Delta x=4\text{mm}$

$2.5 \times \text{I}_\text{peak}$

$\delta z \sim 1\mu\text{m}$

$\Delta z \sim 6.5\mu\text{m}$
Beam manipulation BC1

- spike width and peak current increase tunable via initial energy spread (laser heater)
- allows more complex longitudinal pattern using different masks
- requires more detailed simulation concerning
 - laser launch condition and laser parameters
 - collective effects BC1 & particular at BC2 (micro bunch inst.)
 - FEL simulation to verify possibilities and limitation
- currently not baseline of XFEL design
 but: space should be reserved for future upgrade
- Space requirements (approximately):
 - 1.5 m for undulator
 - 2 m total including screens
 - optical table for laser launching
 - laser beam line injector building to BC1 ?!
- BC2 ?: not so interesting since lower compression (2.5) and much high laser power required

12/20/2006 Holger Schlarb, DESY