

Orbit Correction in the XFEL

Hyunchang Jin, Winfred Decking, Torsten Limberg Beam dynamics meeting (2012.02.20)

Contents

- Introduction
- Simulation results of orbit correction
 - Injector dogleg section
 - Gun to a beamline TD1
- Summary

Introduction

- Object : correcting the beam orbit distorted by quadrupole misalignment up to 500 µm with the technique of singular value decomposition (SVD).
- Method : MAD8 & MATLAB (100 random seeds)

XFEL layout

Orbit response matrix for SVD

• Orbit response matrix M

$$\Delta x_i = M_{ij} \Delta \theta_j$$
change of beam position at BPM *i*
change of the kick angle of the corrector *j*

Orbit response matrix at the injector dogleg section in XFEL

Injector dogleg section

• 8 FODO cells in dogleg section

Orbit correction for quadrupole misalignment 500 μm

Corrector strength for orbit correction

• Each corrector has the maximum kick angle as 3.3 mrad which restricted by magnet field strength and beam energy.

Beta-mismatch parameter B_{mag}

• Beta-mismatch parameter

$$B_{mag} = \frac{1}{2} \left[\frac{\beta(E)}{\beta(E_0)} + \frac{\beta(E_0)}{\beta(E)} + \left(\alpha(E) \sqrt{\frac{\beta(E_0)}{\beta(E)}} - \alpha(E_0) \sqrt{\frac{\beta(E)}{\beta(E_0)}} \right)^2 \right]$$

• Emittance growth by beta-mismatch

$$\Delta \epsilon = \epsilon (B_{mag} - 1)$$

Horizontal beam transport

- The relative energy deviations are equal to 0(blue), 3(red), and -3%(green).
- Sextupoles are switched on.
- Normalized horizontal emittance is 1.0 μm.

0%

3%

-3%

x 10⁻⁴

Vertical beam transport

- The relative energy deviations are equal to 0(blue), 3(red), and -3%(green).
- Sextupoles are switched on.
- Normalized vertical emittance is 1.0 μm.

Dispersion after orbit correction

- The first and second-order horizontal and vertical dispersions can be obtained from the previous phase space portraits. 100 random seeds are examined.
- First and second-order dispersions (absolute values in figure) :
 - $H: |\eta_x| \approx 3.3 \text{ mm } \& |\eta'_x| \approx 9.2 \times 10^{-4}$
 - $V: |\eta_y| \approx 0.6 \text{ mm } \& |\eta'_y| \approx 5.0 \times 10^{-4}$

Gun → TD1

- Correctors : 224(H), 223(V)
- BPMs : 320

Orbit response matrix in XFEL

Orbit correction for quadrupole misalignment(D_x) 100-500 μ m

Number of correctors exceeding maximum strength

• Each corrector has the maximum kick angle which restricted by magnet field strength and beam energy.

Average strength of correctors

• Figure shows the average strength of corrector families which have same maximum strength for the quadrupole misalignment (D_x) 500 μ m.

Summary

- Injector dogleg section
 - Maximum orbit size for quad-misalignment 500 μm
 - H : 1.5 cm → 0.8 mm
 - V : 1.5 cm \rightarrow 2.0 mm
 - Weak chromatic effects after orbit correction
 - H : $B_{mag_max} \approx 1.0005$ (±3%), $|\eta_x| \approx 3.3$ mm
 - V : $B_{mag_max} \approx 1.0002$ (±3%), $|\eta_y| \approx 0.6$ mm
- Gun to TD1
 - Rms orbit size for quad-misalignment 500 μm
 - H : 1.8 cm \rightarrow 0.12 mm
 - V : 1.8 cm \rightarrow 0.13 mm
 - The correctors to be installed in XFEL are enough for correcting the orbit distorted by quadrupole misalignment up to 500 $\mu m.$

Thank you for your attention!