3D field modeling of LCLC-I undulator including horizontal gradient

3D field map reconstruction based on axial field measurements for THz@PITZ

M. Krasilnikov DESY TEMF meeting, 02.11.2020

Undulator for THz@PITZ

LCLS-I undulators (on loan from SLAC)

Properties	Details
Туре	fixed gap planar hybrid (NeFeB)
Nominal gap	6.8 mm
K-value	3.49
Support diameter / length	30 cm / 3.4 m
Vacuum chamber	11 mm x 5 mm
Period length	30 mm
Poles / a module	226 poles (= 113 periods)
Total weight w/o vac. chamber	1000 kg

LCLS-I Undulator Field

Recent measurements of LCLS-I module 26 at DESY in Hamburg (M. Tischer, T. Vielitz, P. Vagin)

- Two LCLS-I undulators have arrived at Hamburg in 08/ 2019
- The fields of the undulator L143-112000-26 have been re-measured at DESY Hamburg and are consistent with SLAC measurement (discrepancy < 0.02 T)

Page 3

DESY.

Measured **transverse taper** is

 $K(x) = 3.47716 + 0.00264755 \times [mm],$

or K/K0(x) = 1 + 0.000761412*x[mm].

LCLS-I Undulator Field

Recent measurements of LCLS-I module 26 at DESY in Hamburg

DESY.

LCLS-I Undulator Field → Analysis

Recent measurements of LCLS-I module 26 at DESY in Hamburg

$$a_{n} = \frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} B_{y,m}(x = 0, y = 0, z) \cos\left(\frac{2\pi nz}{N_{U}\lambda_{U}}\right) dz,$$

$$a_{0} = \frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} B_{y,m}(x = 0, y = 0, z) dz \to 0,$$

$$b_{n} = \frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} B_{y,m}(x = 0, y = 0, z) \sin\left(\frac{2\pi nz}{N_{U}\lambda_{U}}\right) dz.$$

DESY. M. Krasilnikov | 3D field modeling of LCLC-I undulator including horizontal gradient | DESY TEMF Meeting, 2.11.2020

DESY.

LCLS-I Undulator field w/o horizontal gradient

3D field map generation

Vertical and longitudinal components of undulator magnetic field:

 $B_{y}(x, y, z) = \sum_{n=1}^{N_{h} \cdot N_{U}} [\{a_{n} \cos(k_{n}z) + b_{n} \sin(k_{n}z)\} \cdot \cosh(k_{n}y)],$ $B_{z}(x, y, z) = \sum_{n=1}^{N_{h} \cdot N_{U}} [\{-a_{n} \sin(k_{n}z) + b_{n} \cos(k_{n}z)\} \cdot \sinh(k_{n}y)],$

where $k_n = \frac{2\pi n}{N_U \lambda_U}$ is the wavenumber of the *n*-th Fourier harmonic. $\begin{bmatrix} \alpha \\ b \end{bmatrix}_n = \frac{2}{N_U \lambda_U} \int_{-\frac{N_U \lambda_U}{2}}^{\frac{N_U \lambda_U}{2}} B_{y,m}(x = 0, y = 0, z) \begin{bmatrix} \cos \\ \sin \end{bmatrix} \left(\frac{2\pi nz}{N_U \lambda_U}\right) dz,$

1.36 1.22 1.09 1.961 1.955 1.505 1.505 1.407 1.272 1.385

 $N_h = 17; N_U = 120$

How to implement a horizontal gradient?

 \Rightarrow

Consistent implementation of the $B_v(x)$ taper

Besides longitudinal profile By(z)transverse gradient By(x) has been measured

$$\frac{div \vec{B} = 0}{curl \vec{B} = 0} \implies \vec{B} = -\frac{\partial \chi}{\partial \vec{r}} \implies \Delta \chi = 0$$

$$k_x^2 + k_y^2 = k_z^2$$

$$k_x^2 + k_y^2 = k_z^2$$

$$\chi(x, y, z) \propto -\frac{B_0}{k_y} \cdot \cosh(k_x x) \cdot \sinh(k_y y) \cdot \cos(k_z z)$$

$$\frac{B_x(x, y, z)}{k_y^2} \propto \frac{k_x}{k_x^2} \cdot \sinh(k_x x) \cdot \sinh(k_y y) \cdot \cos(k_z z)$$

DESY.

How to implement a horizontal gradient?

Marion White, Greg Edward Wiemerslage, Joseph Z. Xu, Bingxin Yang Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA Heinz-Dieter Nuhn, David Schultz Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025, USA

 $\alpha = \tanh[k_x x_0] \cdot k_x \Rightarrow 0.761412 = \tanh[1.33 \cdot k_x] \cdot k_x \Rightarrow k_x \approx 0.916 \ m^{-1}$

3D Field with horizontal gradient

Based on axial field measurements and transverse taper modeling

$$\chi(x, y, z) = -\frac{\cosh[k_x(x_0 + x)]}{\cosh[k_x x_0]} \cdot \sum_{n=1}^{N_h \cdot N_U} \{a_n \cos(k_{zn} z) + b_n \sin(k_{zn} z)\} \cdot \frac{\sinh(k_{yn} y)}{k_{yn}} \qquad \qquad k_x^2 + k_{yn}^2 = k_{zn}^2$$

NB: The same x-dependence for all modes!

$$B_{x}(x, y, z) = \frac{\sinh[k_{x}(x_{0}+x)]}{\cosh[k_{x}x_{0}]} \cdot \sum_{n=1}^{N_{h} \cdot N_{U}} \{a_{n} \cos(k_{zn}z) + b_{n} \sin(k_{zn}z)\} \cdot \frac{k_{x}}{k_{yn}} \cdot \sinh(k_{yn}y)$$

$$B_{y}(x, y, z) = \frac{\cosh[k_{x}(x_{0}+x)]}{\cosh[k_{x}x_{0}]} \cdot \sum_{n=1}^{N_{h} \cdot N_{U}} \{a_{n} \cos(k_{zn}z) + b_{n} \sin(k_{zn}z)\} \cdot \cosh(k_{yn}y)$$

$$B_{z}(x, y, z) = \frac{\cosh[k_{x}(x_{0}+x)]}{\cosh[k_{x}x_{0}]} \cdot \sum_{n=1}^{N_{h} \cdot N_{U}} \{-a_{n} \sin(k_{zn}z) + b_{n} \cos(k_{zn}z)\} \cdot \frac{k_{zn}}{k_{yn}} \cdot \sinh(k_{yn}y)$$

$$k_{zn} = \frac{2\pi n}{N_{U}\lambda_{U}}$$

$$k_{zn} = \frac{2\pi n}{N_{U}\lambda_{U}}$$

$$k_{zn} = \sqrt{k_{zn}^{2} - k_{x}^{2}}$$

3D Field with horizontal gradient: transverse wave vectors

Based on axial field measurements and transverse taper modeling

$$k_x \approx 0.916 \, m^{-1}$$

 $B_x(x, y, z = 0.64m) \times 1000; B_y(x, y, z = 0.64m)$

Design and modeling of correction coils

Horizontal undulator gradient impact onto beam transport

• **Transverse gradient** will lead to an off-axis (~25 mm) trajectory (~17MeV) in the horizontal plane

?steering coils are considered to correct it

Courtesy Xiangkun Li

Courtesy Anusorn Lueangaramwong

Air Coil Field Simulated by CST2020

Use of Hexahedral mesh model and field results

- We simulated magnetic field of the air coil with a model including
 - Permanent magnet holders with relative permeability of 1000

-1000

-500

- The air coil ends are lifted to lower edge field
- Permanent magnet holders are periodic and provide field enhancement periodically along zaxis

By (T) vs z (mm) @x=0,y=0, I =20A

-1500

•

0.0009

0.0005 0.0002 -0.0001

-2000

Particle tracking with correction coils by Astra

Courtesy Xiangkun Li

Maximum on-axis field of By is 322.9 uT (7.4 A turns)

Beam centroid along the undulator

RMS beam size along the undulator

Design, modeling and preliminary test of correction coils

Iron in the undulator boosts the magnetic field of the steering coils significantly

CST Modeling (Anusorn Lueangaramwong, PITZ)

Maximum on-axis of By is 322.9 uT (7.4 A turns) for a good transport of 17MeV beam Test Setup at DESY in Hamburg (Pavel Vagin, FS-US)

Preliminary measurements with a single wire with 10A \rightarrow estimated field 140 uT

Horizontal undulator gradient impact onto THz SASE FEL

W/o and with coils

DESY. M. Krasilnikov | 3D field modeling of LCLC-I undulator including horizontal gradient | DESY TEMF Meeting, 2.11.2020

Conclusions

3D field map reconstruction based on axial field measurements

- Method to reconstruct a 3D field map of the LCLS-I undulator including horizontal gradient (taper) has been proposed
- It is based on magnetic potential approach using cosh(k_x*x) dependence assuming a significant offset from the field center (|x|<<x₀)
- In order to estimate taper parameters (k_x and x_0) a 4.5 mrad opening angle of the canted magnets was utilized
- This resulted in a 3D field model, where all 3 field components (B_x, B_y, B_z) are treated in a consistent way
 - For $x_0 = 1.33$ m and $k_x = 0.9$ m⁻¹ $\rightarrow k_x << k_{zn}$ \rightarrow the field horizontal gradient (taper) is fairly weak
- A matlab script for the 3D field map generation has been created (supporting formats: ASTRA cavity field and CST external field)
- Transverse gradient will lead to an off-axis (~25 mm) trajectory in the horizontal plane
- Steering coils are under design to correct the steering effect, preliminary experimental tests at DESY in Hamburg have been done
- Simulations of beam trajectory (ASTRA) and THz SASE FEL (WARP) with coils → should work!

